As one critical source of water for maintaining ecosystems in arid and semi-arid regions, rainfall replenishment to soil water can determine vegetation growth and ecosystem functions. However, the limited rainfall res...As one critical source of water for maintaining ecosystems in arid and semi-arid regions, rainfall replenishment to soil water can determine vegetation growth and ecosystem functions. However, the limited rainfall resources were often not used effectively in the semi-arid loess hilly areas due to random temporal and spatial distribution of rainfall and specific vegetation features. Thus, it is highly significant to determine the threshold and efficiency of rainfall replenishment to soil water under different vegetation types. The threshold and efficiency can offer scientific evidence for rehabilitating vegetation and improving efficiency of using rainfall resources. In this study, the efficiency and threshold of rainfall replenishment to soil water were determined under natural grassland, wheat, artificial grassland, sea buckthorn shrubland and Chinese pine forestland based on consecutive measurements. The results indicated that the lag-time, rate, efficiency of rainfall replenishment to soil water were closely related to vegetation type, with significant differences existing among different vegetation types. The lag-time for natural grassland in the soil horizon of 20 cm was the shortest one (26.4 h), followed by wheat (27.8 h), sea buckthorn (41.8 h), artificial grassland (50.0 h) and Chinese pine (81.8 h).The value of replenishment rate, followed the order of wheat (0.40 mm h-l)〉 natural grassland (0.30 mm h-~)〉 sea buckthorn (0.17 mm h-t)〉 artificial grassland (0.14 mm h-l)〉 Chinese pine (0.09 mm fit). As for the efficiency of rainfall replenishment to soil water, natural grassland was the most efficient one (35.1%), followed by wheat (29.2%), sea buckthorn (16.8%), artificial grassland (11.5%), Chinese pine (4.2%). At last, it was found that wheat had the lowest threshold (6.8 mm) of rainfall replenishment to soil water, which was followed by natural grassland (10.5 mm), sea buckthorn (20.5 mm), artificial grassland (22.6 mm)展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41401209)National Key Research and Development Program of China(Grant No.2016YFC0501701)
文摘As one critical source of water for maintaining ecosystems in arid and semi-arid regions, rainfall replenishment to soil water can determine vegetation growth and ecosystem functions. However, the limited rainfall resources were often not used effectively in the semi-arid loess hilly areas due to random temporal and spatial distribution of rainfall and specific vegetation features. Thus, it is highly significant to determine the threshold and efficiency of rainfall replenishment to soil water under different vegetation types. The threshold and efficiency can offer scientific evidence for rehabilitating vegetation and improving efficiency of using rainfall resources. In this study, the efficiency and threshold of rainfall replenishment to soil water were determined under natural grassland, wheat, artificial grassland, sea buckthorn shrubland and Chinese pine forestland based on consecutive measurements. The results indicated that the lag-time, rate, efficiency of rainfall replenishment to soil water were closely related to vegetation type, with significant differences existing among different vegetation types. The lag-time for natural grassland in the soil horizon of 20 cm was the shortest one (26.4 h), followed by wheat (27.8 h), sea buckthorn (41.8 h), artificial grassland (50.0 h) and Chinese pine (81.8 h).The value of replenishment rate, followed the order of wheat (0.40 mm h-l)〉 natural grassland (0.30 mm h-~)〉 sea buckthorn (0.17 mm h-t)〉 artificial grassland (0.14 mm h-l)〉 Chinese pine (0.09 mm fit). As for the efficiency of rainfall replenishment to soil water, natural grassland was the most efficient one (35.1%), followed by wheat (29.2%), sea buckthorn (16.8%), artificial grassland (11.5%), Chinese pine (4.2%). At last, it was found that wheat had the lowest threshold (6.8 mm) of rainfall replenishment to soil water, which was followed by natural grassland (10.5 mm), sea buckthorn (20.5 mm), artificial grassland (22.6 mm)