In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale...In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.展开更多
We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning a...We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions.展开更多
A rainfall that occurred during 0200–1400 Beijing Standard Time(BST)25 August 2008 shows the rapid development of a convective system,a short life span,and a record rate of 117.5 mm h-1for Xujiahui station since 1872...A rainfall that occurred during 0200–1400 Beijing Standard Time(BST)25 August 2008 shows the rapid development of a convective system,a short life span,and a record rate of 117.5 mm h-1for Xujiahui station since 1872.To study this torrential rainfall process,the partitioning method of Q vector is developed,in which a moist Q vector is first separated into a dry ageostrophic Q vector(DQ)and a diabatic-heating component.The dry ageostrophic Q vector is further partitioned along isothermal lines in the natural coordinate to identify different scale forcing in adiabatic atmosphere,and the large-scale and convective condensational heating in non-uniform saturated atmosphere,convective condensational heating, and Laplace of diabatic heating that includes radiative heating and other heating and cooling processes,are calculated to study the forcing from diabatic heating.The effects of the environmental conditions on the development of the rainfall processes are diagnosed by performing the partitioning of Q vector based on 6-hourly NCEP/NCAR Final Analysis(FNL)data with the horizontal resolution of 1°×1°.The results include the following:(1)a low-pressure inverted trough associated with the landfall of Typhoon Nuri (2008),a strong southwesterly jet along the western side of the subtropical high,and an eastward-propagating westerly low-pressure trough provide favorable synoptic conditions for the development of torrential rainfall;(2)the analysis of DQ vector showed that the upward motions forced by the convergence of DQ vector in the lower troposphere(1000–600 hPa)favor the development of torrential rainfall.When DQ vector converges in the upper troposphere(500–100 hPa),upward motions in the whole air column intensify significantly to accelerate the development of torrential rainfall;(3)the partitioning analysis of DQ vector reveals that large-scale forcing persistently favors the development of torrential rainfall whereas the mesoscale forcing speeds up the torrential rainfall;(4)the calculations of large-scale 展开更多
This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensiti...This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.展开更多
The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of...The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of the potential of agriculture, mainly because of inappropriate rainwater management. At farm level, rainwater is exposed to poor partitioning described as flooding, land degradation, siltation and water scarcity for domestic, irrigation, hydropower and environmental uses in the basin. Hence, it is one of the root causes of food-insecurity in the region. To reverse this situation and achieve increased rainwater productivity knowledge of rainfall partitioning at grassroots level is significantly important. However, rainwater partitioning and partitioning points are not clearly known by farmers in the area. Besides, understanding water-routes helps to manage rainwater with integrated water resources management (IWRM) processes. The objective of this study was to identify the knowledge gap of farmers and experts on rainwater partitioning that help for increased water productivity. Intensive monitoring and interviews have been carried out for 81 farmers and 22 local experts in three pilot sites. The interviewed farmers and experts are clearly aware of the runoff partitioning, since it is easily observable. While, only 10% of the farmers and 25% of experts know about evaporation partitioning, which is the largest compared to other losses. The paper gives recommendations for better understanding of rainfall partitioning points and management of water-routes at grassroots level to increase rainwater productivity and enhance food security in the area with IWRM processes.展开更多
A heavy rain process of the Changjiang-Huaihe Meiyu front (MYF) is diagnosed by the agency of the traditional Q vector partitioning (QVP) method to decompose the wet Q vector (Q) in a natural coordinate system that fo...A heavy rain process of the Changjiang-Huaihe Meiyu front (MYF) is diagnosed by the agency of the traditional Q vector partitioning (QVP) method to decompose the wet Q vector (Q) in a natural coordinate system that follows the isoentropes and by using the numerical simulation results of the revised MM4 meso-scale model. The technique shows that the partitioned wet Q vectors can lead to a significant scale separation of vertical motion related to the torrential rain. The results not only verify the existing conclusion that different scales interact throughout the rainstorm but also indicate the largely different roles of these scales during differing phases of the heavy ramfall on a quantitative basis. Specifically, during the developing stage, the large-scale plays a predominant role in forcing vertical motion, while frontal-scale forcing is secondary; during the intense stage, the frontal-scale evolves into the primary factor of forcing vertical motion, whereas the large-scale forcing is minor and plays a diminishing role and can even be ignored; and during the decaying stage, the large-scale once again serves as the main forcing of vertical motion in such a way that the forcing of the frontal-scale decays quickly and is of secondary importance. Furthermore, the partitioned wet Q vectors are suggested to be more suitable than the total wet Q vector for evaluating the potential physical mechanism of rainstorm genesis. The first step is that the forcing of large-scale $2?bla cdot {? Q}_s^*$ gives rise to the genesis of meso-scale $2?bla cdot {? Q}_n^*$ forcing; and then, accordingly as $2?bla cdot {? Q}_n^*$ forcing increases, whereby the secondary circulation is reinforced, the intensity of the rainfall is strengthened; and at last, the secondary circulation caused by $2?bla cdot {? Q}_n^*$ forcing is directly responsible for generation of the MYF heavy rainfall.展开更多
Following similar derivation of quasi-geostrophic Q vector (Q^C), a new Q vector (Q^N) is constructed in this study. Their difference is that the geostrophic wind in quasi-geostrophic Q vector is replaced by the w...Following similar derivation of quasi-geostrophic Q vector (Q^C), a new Q vector (Q^N) is constructed in this study. Their difference is that the geostrophic wind in quasi-geostrophic Q vector is replaced by the wind in Q^N vector. The diagnostic analysis of Q^N vector is compared with that of Q^G vector in the case study of a typical Meiyu front cyclone (MYFC) occurred over Changjiang-Huaihe regions during 5-6 July 1991. The results show that the Q^N vector has more diagnostic advantages than Q^G vector does. Convergence of Q^N vector at 700 hPa is found to be a good indicator to mimic the horizontal distribution of precipitation. Q^N vector is further partitioned into four components: Q^Nalst (along-stream stretching),Q^Ncurv (curvature),Q^Nshdv (shear advection), and Q^Ncrst (cross-stream stretching) in a natural coordinate system with isohypse (PG partitioning). The application of Q^N PG partitioning in the MYFC torrential rain indicates that PG partitioning of Q can identify dominant physical processes. The horizontal distribution of 2V·Q^Nalst is similar to that of 2V·Q^N and mainly accounts for 2V·Q^N during the entire period of Meiyu. The effects of Q^Ncurv on rainfall enhancement fade from the mature stage to decay stage. Qshdv enhances precipitation significantly as the MYFC develops, and the effect weakens rapidly when the MYFC decays during its eastward propagation. Q^Ncrst shows little impacts on rainfall during the onset and mature phases whereas it displays significant role during the decay phase.Q^N alst and Q^Nshdv and Q^Ncrst show cancellation only during the decay period.展开更多
Data from Goddard cumulus ensemble model experiment are used to study temporal and spatial scale dependence of tropical rainfall separation analysis based on cloud budget during Tropical Ocean Global Atmosphere Couple...Data from Goddard cumulus ensemble model experiment are used to study temporal and spatial scale dependence of tropical rainfall separation analysis based on cloud budget during Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The analysis shows that the calculations of model domain mean or time-mean grid-scale mean simulation data overestimate the rain rates of the two rainfall types associated with net condensation but they severely underestimate the rain rate of the rainfall type associated with net evaporation and hydrometeor convergence.展开更多
基金National Natural Science Foundation of China (41075039,41175065)National Key Basic Research and Development Project of China (2011CB403405)+1 种基金Chinese Special Scientific Research Project for Public Interest (GYHY200806009)Qinglan Project of Jiangsu Province of China (2009)
文摘In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.
基金funded by the Innovation Research Project of the Chinese Academy of Sciences (No. KZCX 2-XB2-04-01)the National Natural Science Foundation of China (No. 30771767, 40771079)
文摘We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions.
基金National Natural Science Foundation of China(40875025,40875030,40775033,40921160381)Shanghai Natural Science Foundation of China(08ZR1422900)Key Promotion Project of New Meteorology Technology of the China Meteorological Administration in 2009(09A13)
文摘A rainfall that occurred during 0200–1400 Beijing Standard Time(BST)25 August 2008 shows the rapid development of a convective system,a short life span,and a record rate of 117.5 mm h-1for Xujiahui station since 1872.To study this torrential rainfall process,the partitioning method of Q vector is developed,in which a moist Q vector is first separated into a dry ageostrophic Q vector(DQ)and a diabatic-heating component.The dry ageostrophic Q vector is further partitioned along isothermal lines in the natural coordinate to identify different scale forcing in adiabatic atmosphere,and the large-scale and convective condensational heating in non-uniform saturated atmosphere,convective condensational heating, and Laplace of diabatic heating that includes radiative heating and other heating and cooling processes,are calculated to study the forcing from diabatic heating.The effects of the environmental conditions on the development of the rainfall processes are diagnosed by performing the partitioning of Q vector based on 6-hourly NCEP/NCAR Final Analysis(FNL)data with the horizontal resolution of 1°×1°.The results include the following:(1)a low-pressure inverted trough associated with the landfall of Typhoon Nuri (2008),a strong southwesterly jet along the western side of the subtropical high,and an eastward-propagating westerly low-pressure trough provide favorable synoptic conditions for the development of torrential rainfall;(2)the analysis of DQ vector showed that the upward motions forced by the convergence of DQ vector in the lower troposphere(1000–600 hPa)favor the development of torrential rainfall.When DQ vector converges in the upper troposphere(500–100 hPa),upward motions in the whole air column intensify significantly to accelerate the development of torrential rainfall;(3)the partitioning analysis of DQ vector reveals that large-scale forcing persistently favors the development of torrential rainfall whereas the mesoscale forcing speeds up the torrential rainfall;(4)the calculations of large-scale
基金supported by the National Key Basic Research and Development Project of China under Grant 2011CB403405the Chinese Special Scientific Research Project for Public Interest under Grant GYHY200806009+1 种基金the National Natural Science Foundation of China under Grants 41075039 and 41175065the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.
文摘The Upper Blue Nile Basin, the highest sources of the Nile River flow through this area, is still under severe land degradation, which aggravates water scarcity. The productivity of subsistence farming is below 50% of the potential of agriculture, mainly because of inappropriate rainwater management. At farm level, rainwater is exposed to poor partitioning described as flooding, land degradation, siltation and water scarcity for domestic, irrigation, hydropower and environmental uses in the basin. Hence, it is one of the root causes of food-insecurity in the region. To reverse this situation and achieve increased rainwater productivity knowledge of rainfall partitioning at grassroots level is significantly important. However, rainwater partitioning and partitioning points are not clearly known by farmers in the area. Besides, understanding water-routes helps to manage rainwater with integrated water resources management (IWRM) processes. The objective of this study was to identify the knowledge gap of farmers and experts on rainwater partitioning that help for increased water productivity. Intensive monitoring and interviews have been carried out for 81 farmers and 22 local experts in three pilot sites. The interviewed farmers and experts are clearly aware of the runoff partitioning, since it is easily observable. While, only 10% of the farmers and 25% of experts know about evaporation partitioning, which is the largest compared to other losses. The paper gives recommendations for better understanding of rainfall partitioning points and management of water-routes at grassroots level to increase rainwater productivity and enhance food security in the area with IWRM processes.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.40075009 and 40205008,and by Project 37020 of the Social Public Special Research Grant of the Ministry of Science and Technology of China.
文摘A heavy rain process of the Changjiang-Huaihe Meiyu front (MYF) is diagnosed by the agency of the traditional Q vector partitioning (QVP) method to decompose the wet Q vector (Q) in a natural coordinate system that follows the isoentropes and by using the numerical simulation results of the revised MM4 meso-scale model. The technique shows that the partitioned wet Q vectors can lead to a significant scale separation of vertical motion related to the torrential rain. The results not only verify the existing conclusion that different scales interact throughout the rainstorm but also indicate the largely different roles of these scales during differing phases of the heavy ramfall on a quantitative basis. Specifically, during the developing stage, the large-scale plays a predominant role in forcing vertical motion, while frontal-scale forcing is secondary; during the intense stage, the frontal-scale evolves into the primary factor of forcing vertical motion, whereas the large-scale forcing is minor and plays a diminishing role and can even be ignored; and during the decaying stage, the large-scale once again serves as the main forcing of vertical motion in such a way that the forcing of the frontal-scale decays quickly and is of secondary importance. Furthermore, the partitioned wet Q vectors are suggested to be more suitable than the total wet Q vector for evaluating the potential physical mechanism of rainstorm genesis. The first step is that the forcing of large-scale $2?bla cdot {? Q}_s^*$ gives rise to the genesis of meso-scale $2?bla cdot {? Q}_n^*$ forcing; and then, accordingly as $2?bla cdot {? Q}_n^*$ forcing increases, whereby the secondary circulation is reinforced, the intensity of the rainfall is strengthened; and at last, the secondary circulation caused by $2?bla cdot {? Q}_n^*$ forcing is directly responsible for generation of the MYF heavy rainfall.
基金Supported by National Natural Science Foundation of China under Grant Nos.40875025,40405009,and 40205008Shanghal Natural Science Foundation of China under Grant No.08ZR1422900.
文摘Following similar derivation of quasi-geostrophic Q vector (Q^C), a new Q vector (Q^N) is constructed in this study. Their difference is that the geostrophic wind in quasi-geostrophic Q vector is replaced by the wind in Q^N vector. The diagnostic analysis of Q^N vector is compared with that of Q^G vector in the case study of a typical Meiyu front cyclone (MYFC) occurred over Changjiang-Huaihe regions during 5-6 July 1991. The results show that the Q^N vector has more diagnostic advantages than Q^G vector does. Convergence of Q^N vector at 700 hPa is found to be a good indicator to mimic the horizontal distribution of precipitation. Q^N vector is further partitioned into four components: Q^Nalst (along-stream stretching),Q^Ncurv (curvature),Q^Nshdv (shear advection), and Q^Ncrst (cross-stream stretching) in a natural coordinate system with isohypse (PG partitioning). The application of Q^N PG partitioning in the MYFC torrential rain indicates that PG partitioning of Q can identify dominant physical processes. The horizontal distribution of 2V·Q^Nalst is similar to that of 2V·Q^N and mainly accounts for 2V·Q^N during the entire period of Meiyu. The effects of Q^Ncurv on rainfall enhancement fade from the mature stage to decay stage. Qshdv enhances precipitation significantly as the MYFC develops, and the effect weakens rapidly when the MYFC decays during its eastward propagation. Q^Ncrst shows little impacts on rainfall during the onset and mature phases whereas it displays significant role during the decay phase.Q^N alst and Q^Nshdv and Q^Ncrst show cancellation only during the decay period.
基金supported by the National Key Basic Research and Development Project of China under Grant No.2011CB403405the National Natural Science Foundation of China under Grant Nos.41075039 and 41175065the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Data from Goddard cumulus ensemble model experiment are used to study temporal and spatial scale dependence of tropical rainfall separation analysis based on cloud budget during Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The analysis shows that the calculations of model domain mean or time-mean grid-scale mean simulation data overestimate the rain rates of the two rainfall types associated with net condensation but they severely underestimate the rain rate of the rainfall type associated with net evaporation and hydrometeor convergence.