This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit...This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced.展开更多
Progress over the past decade in understanding moisture-driven dynamics and torrential rain storms in China is reviewed in this paper. First, advances in incorporating moisture effects more realistically into theory a...Progress over the past decade in understanding moisture-driven dynamics and torrential rain storms in China is reviewed in this paper. First, advances in incorporating moisture effects more realistically into theory are described, including the development of a new parameter, generalized moist potential vorticity(GMPV) and an improved moist ageostrophic Q vector(Qum). Advances in vorticity dynamics are also described, including the adoption of a "parcel dynamic" approach to investigate the development of the vertical vorticity of an air parcel; a novel theory of slantwise vorticity development, proposed because vorticity develops easily near steep isentropic surfaces; and the development of the convective vorticity vector(CVV)as an effective new tool. The significant progress in both frontal dynamics and wave dynamics is also summarized, including the geostrophic adjustment of initial unbalanced flow and the dual role of boundary layer friction in frontogenesis, as well as the interaction between topography and fronts, which indicate that topographic perturbations alter both frontogenesis and frontal structure. For atmospheric vortices, mixed wave/vortex dynamics has been extended to explain the propagation of spiral rainbands and the development of dynamical instability in tropical cyclones. Finally, we review wave and basic flow interaction in torrential rainfall, for which it was necessary to extend existing theory from large-scale flows to mesoscale fields, enriching our knowledge of mesoscale atmospheric dynamics.展开更多
The SST variability during the summer period in the northeastern tropical Atlantic region (NTA) is characterized by an alternation of warming/cooling which represents 87% of the total variability. The aim of this pape...The SST variability during the summer period in the northeastern tropical Atlantic region (NTA) is characterized by an alternation of warming/cooling which represents 87% of the total variability. The aim of this paper is to study the atmospheric responses as well as the precipitation associated with these oceanic conditions. Based on Reynolds’s SST from 1982 to 2019, a normalized Northern Tropical Atlantic index (NTAI) is computed into the region between 15° - 25°W;12° - 16°N and a composite analysis is then performed. It is shown that the NTAI is significantly correlated with the SST’s first principal component mode (PC1) in this region. Moreover, the composite of SST anomalies and atmospheric parameters exhibits a strong local ocean-atmosphere interaction which highly impacts the large-scale atmospheric circulation in West Africa, particularly in the western Sahel. An in-depth analysis shows that the atmospheric response to the warm (cold) SST is a cyclonic (anticyclonic) circulation in the lower layers near the West Africa Coast. This cyclonic (anticyclonic) circulation strengthens/reduces the moisture transport towards the continent in the low levels. In the middle layers of the atmosphere (500 hPa), the warm (cold) composite is associated with a decrease (increase) in the intensity of the African Easterly Jet (AEJ) whereas, in the upper atmosphere (200 hPa), the strengthening (weakening) of the Tropical Easterly Jet (TEJ) is observed. With regard to the composite precipitation field, a positive/negative SST anomaly is associated with significantly enhanced/reduced rainfall in the western Sahelian region. It is found that this relationship (correlation) increases as we are closer to the coasts.展开更多
Water vapor content, instability, and convergence conditions are the key to short-duration heavy rainfall forecasting. It is necessary to understand the large-scale atmospheric environment characteristics of short- du...Water vapor content, instability, and convergence conditions are the key to short-duration heavy rainfall forecasting. It is necessary to understand the large-scale atmospheric environment characteristics of short- duration heavy rainfall by investigating the distribution of physical parameters for different hourly rainfall intensities. The observed hourly rainfall data in China and the NCEP final analysis (FNL) data during 1 May and 30 September from 2002 to 2009 are used. NCEP FNL data are 6-hourly, resulting in sample sizes of 1573370, 355346, and 11401 for three categories of hourly rainfall (P) of no precipitation (P 〈 0.1 mm h-1), ordinary precipitation (0.1≤ P 〈 20 mm h-1), and short-duration heavy rainfall (P ≥ 20.0 mm h-1), respectively, by adopting a temporal matching method. The results show that the total precipitable water (PWAT) is the best parameter indicating the hourly rainfall intensity. A PWAT of 28 mm is necessary for any short-duration heavy rainfall. The possibility of short-duration heavy rainfall occurrence increases with PWAT, and a PWAT of 59 mm is nearly sufficient. The specific humidity is a better indicator than relative humidity. Both 700- and 850-hPa relative humidity greater than 80% could be used to determine whether or not it is going to rain, but could not be used to estimate the rainfall intensity. Temperature and potential pseudo-equivalent temperature are also reasonable indicators of short-duration heavy rainfall. Among the atmospheric instability parameters, the best lifted index (BLI) performs best on the short- duration rainfall discrimination; the next best is the K index (KI). The three rainfall categories are not well recognized by total totals (TT) or the temperature difference between 850 and 500 hPa (DT85). Three- quarters of short-duration heavy rainfall occurred with BLI less than -0.9, while no short-duration heavy rainfall occurred when BLI was greater than 2.6. The minimum threshold of KI was 28.1 for short-durati展开更多
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the pa...Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1999s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s 1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.展开更多
基金The National Natural Science Foundation of China(Grant Nos.42030610 and 42075083)the Innovation and Development Project of China Meteorological Administration(CXFZ2022J014)supported this study.
文摘This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91437215 and 41375052)State Key Laboratory of Severe Weather Open Project (Grant No. 2013LASW-A06)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW05-01)
文摘Progress over the past decade in understanding moisture-driven dynamics and torrential rain storms in China is reviewed in this paper. First, advances in incorporating moisture effects more realistically into theory are described, including the development of a new parameter, generalized moist potential vorticity(GMPV) and an improved moist ageostrophic Q vector(Qum). Advances in vorticity dynamics are also described, including the adoption of a "parcel dynamic" approach to investigate the development of the vertical vorticity of an air parcel; a novel theory of slantwise vorticity development, proposed because vorticity develops easily near steep isentropic surfaces; and the development of the convective vorticity vector(CVV)as an effective new tool. The significant progress in both frontal dynamics and wave dynamics is also summarized, including the geostrophic adjustment of initial unbalanced flow and the dual role of boundary layer friction in frontogenesis, as well as the interaction between topography and fronts, which indicate that topographic perturbations alter both frontogenesis and frontal structure. For atmospheric vortices, mixed wave/vortex dynamics has been extended to explain the propagation of spiral rainbands and the development of dynamical instability in tropical cyclones. Finally, we review wave and basic flow interaction in torrential rainfall, for which it was necessary to extend existing theory from large-scale flows to mesoscale fields, enriching our knowledge of mesoscale atmospheric dynamics.
文摘The SST variability during the summer period in the northeastern tropical Atlantic region (NTA) is characterized by an alternation of warming/cooling which represents 87% of the total variability. The aim of this paper is to study the atmospheric responses as well as the precipitation associated with these oceanic conditions. Based on Reynolds’s SST from 1982 to 2019, a normalized Northern Tropical Atlantic index (NTAI) is computed into the region between 15° - 25°W;12° - 16°N and a composite analysis is then performed. It is shown that the NTAI is significantly correlated with the SST’s first principal component mode (PC1) in this region. Moreover, the composite of SST anomalies and atmospheric parameters exhibits a strong local ocean-atmosphere interaction which highly impacts the large-scale atmospheric circulation in West Africa, particularly in the western Sahel. An in-depth analysis shows that the atmospheric response to the warm (cold) SST is a cyclonic (anticyclonic) circulation in the lower layers near the West Africa Coast. This cyclonic (anticyclonic) circulation strengthens/reduces the moisture transport towards the continent in the low levels. In the middle layers of the atmosphere (500 hPa), the warm (cold) composite is associated with a decrease (increase) in the intensity of the African Easterly Jet (AEJ) whereas, in the upper atmosphere (200 hPa), the strengthening (weakening) of the Tropical Easterly Jet (TEJ) is observed. With regard to the composite precipitation field, a positive/negative SST anomaly is associated with significantly enhanced/reduced rainfall in the western Sahelian region. It is found that this relationship (correlation) increases as we are closer to the coasts.
基金Supported by the Meteorological Integration and Application of Key Techniques(CMAGJ2013Z04)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406002 and GYHY201206004)National(Key)Basic Research and Development(973)Program of China(2013CB430106)
文摘Water vapor content, instability, and convergence conditions are the key to short-duration heavy rainfall forecasting. It is necessary to understand the large-scale atmospheric environment characteristics of short- duration heavy rainfall by investigating the distribution of physical parameters for different hourly rainfall intensities. The observed hourly rainfall data in China and the NCEP final analysis (FNL) data during 1 May and 30 September from 2002 to 2009 are used. NCEP FNL data are 6-hourly, resulting in sample sizes of 1573370, 355346, and 11401 for three categories of hourly rainfall (P) of no precipitation (P 〈 0.1 mm h-1), ordinary precipitation (0.1≤ P 〈 20 mm h-1), and short-duration heavy rainfall (P ≥ 20.0 mm h-1), respectively, by adopting a temporal matching method. The results show that the total precipitable water (PWAT) is the best parameter indicating the hourly rainfall intensity. A PWAT of 28 mm is necessary for any short-duration heavy rainfall. The possibility of short-duration heavy rainfall occurrence increases with PWAT, and a PWAT of 59 mm is nearly sufficient. The specific humidity is a better indicator than relative humidity. Both 700- and 850-hPa relative humidity greater than 80% could be used to determine whether or not it is going to rain, but could not be used to estimate the rainfall intensity. Temperature and potential pseudo-equivalent temperature are also reasonable indicators of short-duration heavy rainfall. Among the atmospheric instability parameters, the best lifted index (BLI) performs best on the short- duration rainfall discrimination; the next best is the K index (KI). The three rainfall categories are not well recognized by total totals (TT) or the temperature difference between 850 and 500 hPa (DT85). Three- quarters of short-duration heavy rainfall occurred with BLI less than -0.9, while no short-duration heavy rainfall occurred when BLI was greater than 2.6. The minimum threshold of KI was 28.1 for short-durati
基金Supported by the National Science and Technology Support Program of China (2007BAC03A01)Strategic Priority Research Program on Climate Change of the Chinese Academy of Sciences (XDA05090306)+1 种基金National Basic Research and Development (973) Program of China (2012CB955401)National Natural Science Foundation of China (40905041)
文摘Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1999s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s 1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.