期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DeepLab v3的西藏地区降雨云团分割方法
被引量:
4
1
作者
张永宏
刘昊
+1 位作者
田伟
王剑庚
《计算机应用》
CSCD
北大核心
2020年第9期2781-2788,共8页
针对高原地区数值预测法建模复杂,雷达回波外推法易产生累积误差且模型参数难以设置的问题,提出了一种基于改进DeepLab v3网络模型的西藏地区降雨云团的分割方法。首先,通过编码网络中的卷积层和残差模块进行下采样;然后,利用空洞卷积...
针对高原地区数值预测法建模复杂,雷达回波外推法易产生累积误差且模型参数难以设置的问题,提出了一种基于改进DeepLab v3网络模型的西藏地区降雨云团的分割方法。首先,通过编码网络中的卷积层和残差模块进行下采样;然后,利用空洞卷积构建多尺度采样模块,并且加入注意力机制模块提取深层高维特征;最后,通过解码网络利用反卷积恢复特征图分辨率。将所提方法与谷歌语义分割网络DeepLab v3等模型在验证集上进行比较,实验结果表明所提方法具有更好的分割性能与泛化能力,其降雨云团分割结果更为准确,平均交并比(Miou)达到0.95,与原始DeepLab v3相比提高了15.54个百分点。在小目标上和非平衡数据集上,该方法可以更准确地分割出降雨云团,为降雨云团监测预警提供参考。
展开更多
关键词
降雨云团分割
多尺度采样
注意力机制
DeepLab
v3
遥感图像处理
下载PDF
职称材料
题名
基于DeepLab v3的西藏地区降雨云团分割方法
被引量:
4
1
作者
张永宏
刘昊
田伟
王剑庚
机构
南京信息工程大学
南京信息工程大学自动化学院
南京信息工程大学计算机与软件学院
南京信息工程大学大气物理学院
出处
《计算机应用》
CSCD
北大核心
2020年第9期2781-2788,共8页
基金
国家自然科学基金资助项目(41875027)。
文摘
针对高原地区数值预测法建模复杂,雷达回波外推法易产生累积误差且模型参数难以设置的问题,提出了一种基于改进DeepLab v3网络模型的西藏地区降雨云团的分割方法。首先,通过编码网络中的卷积层和残差模块进行下采样;然后,利用空洞卷积构建多尺度采样模块,并且加入注意力机制模块提取深层高维特征;最后,通过解码网络利用反卷积恢复特征图分辨率。将所提方法与谷歌语义分割网络DeepLab v3等模型在验证集上进行比较,实验结果表明所提方法具有更好的分割性能与泛化能力,其降雨云团分割结果更为准确,平均交并比(Miou)达到0.95,与原始DeepLab v3相比提高了15.54个百分点。在小目标上和非平衡数据集上,该方法可以更准确地分割出降雨云团,为降雨云团监测预警提供参考。
关键词
降雨云团分割
多尺度采样
注意力机制
DeepLab
v3
遥感图像处理
Keywords
rainfall
cloud
segmentation
multi-scale
sampling
attention
mechanism
DeepLab
v3
remote
sensing
image
processing
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP751 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DeepLab v3的西藏地区降雨云团分割方法
张永宏
刘昊
田伟
王剑庚
《计算机应用》
CSCD
北大核心
2020
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部