The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, provides new possibilities for innovating on network design. Researchers have started to ex...The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, provides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solutions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only softwaredefined cellular network solutions and specifications in order to provide possible research directions.展开更多
文摘The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, provides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solutions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only softwaredefined cellular network solutions and specifications in order to provide possible research directions.