Due to their potential properties unlike traditional materials and structures,elastic wave metamaterials have received significant interests in recent years.With the coupling between the acoustic and vibration,their m...Due to their potential properties unlike traditional materials and structures,elastic wave metamaterials have received significant interests in recent years.With the coupling between the acoustic and vibration,their mechanical characteristics can be tuned by the active feedback control system at low frequency ranges in which the traditional passive control is limited.This work illustrates that the superior performances of the effective mass density and sound pressure level(SPL)of an elastic wave metamaterial can be significantly changed by the active control,in which the periodic array of local resonators and orthogonal stiffeners are included.Significantly,based on the locally resonant mechanism,the negative density occurs over a frequency range.Due to the effects of lattice constant,structural damping and other parameters,the SPL with the function of fluid-solid coupling are illustrated and discussed.展开更多
Climate change is an important societal issue. Large effort in society is spent on addressing it. For adequate measures, it is important that the phenomenon of climate change is well understood, especially the effect ...Climate change is an important societal issue. Large effort in society is spent on addressing it. For adequate measures, it is important that the phenomenon of climate change is well understood, especially the effect of adding carbon dioxide to the atmosphere. In this work, a theoretical fully analytical study is presented of the so-called greenhouse effect of carbon dioxide. The effect of this gas in the atmosphere itself was already determined as being of little importance based on empirical analysis. In the current work, the effect is studied both phenomenologically and analytically. In a first attempt of energy transfer by radiation only, it is solved by ideal-gas-law equations and the atmosphere is divided into an infinite number of layers each absorbing and reemitting infrared radiation (surpassing the classical Beer-Lambert analysis of absorption). The result is that the exact structure of the atmosphere is irrelevant for the analysis;we might as well keep the two-box model for any analytical approach. However, the results are unsatisfactory in that they cannot explain the profile of the atmosphere. In a new approach, the atmosphere is solved by taking both radiative as well as thermodynamic processes into account. The model fully fits the empirical data and an analytical equation is given for the atmospheric behavior. Upper limits are found for the greenhouse effect ranging from zero to a couple of mK per ppm CO2. It is shown that it cannot explain the observed correlation of carbon dioxide and surface temperature. This correlation, however, is readily explained by Henry’s Law (outgassing of oceans), with other phenomena insignificant. Finally, while the greenhouse effect can thus, in a rudimentary way, explain the behavior of the atmosphere of Earth, it fails describing other atmospheres such as that of Mars. Moreover, looking at three cities in Spain, it is found that radiation balances only cannot explain the temperature of these cities. Finally, three data sets with different time scales (60 years, 展开更多
The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequen...The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.展开更多
Atmospheric carbon dioxide concentration [CO2],incoming solar radiation and sea ice coverage are among the most important factors that control the global climate.By applying the simple cell-to-cell mapping technique t...Atmospheric carbon dioxide concentration [CO2],incoming solar radiation and sea ice coverage are among the most important factors that control the global climate.By applying the simple cell-to-cell mapping technique to a simplified atmosphere-ocean-sea ice feedback climate model,effects of these factors on the stability of the climatic system are studied.The current climatic system is found to be stable but highly nonlinear.The resiliency of stability increases with [CO2] to a summit when [CO2] reaches 290 μL/L which is comparable to the pre-industrial level,suggesting carbon dioxide is essential to the stability of the global climate.With [CO2] rising further,the global climate stability decreases,the mean ocean temperature goes up and the sea ice coverage shrinks in the polar region.When the incoming solar radiation is intensified,the ice coverage gradually diminishes,but the mean ocean temperature remains relatively constant.Overall,our analysis suggests that at the current levels of three external factors the stability of global climate is highly resilient.However,there exists a possibility of extreme states of climate,such as a snow-ball earth and an ice-free earth.展开更多
In this paper,the slow orbit feedback system of HLS,including the feedback principle,the hardware,the software and the main operation results,is briefly introduced.With the help of slow orbit feedback system,the verti...In this paper,the slow orbit feedback system of HLS,including the feedback principle,the hardware,the software and the main operation results,is briefly introduced.With the help of slow orbit feedback system,the vertical orbit stability of HLS is better than 30 microns,which meets the requirement of synchrotron radiation users and is comparable with the international advanced level of orbit stability in the same kind of machines.展开更多
基金the supports by the National Natural Science Foundation of China(Grants 11922209,11991031 and 12021002)for this research work.
文摘Due to their potential properties unlike traditional materials and structures,elastic wave metamaterials have received significant interests in recent years.With the coupling between the acoustic and vibration,their mechanical characteristics can be tuned by the active feedback control system at low frequency ranges in which the traditional passive control is limited.This work illustrates that the superior performances of the effective mass density and sound pressure level(SPL)of an elastic wave metamaterial can be significantly changed by the active control,in which the periodic array of local resonators and orthogonal stiffeners are included.Significantly,based on the locally resonant mechanism,the negative density occurs over a frequency range.Due to the effects of lattice constant,structural damping and other parameters,the SPL with the function of fluid-solid coupling are illustrated and discussed.
文摘Climate change is an important societal issue. Large effort in society is spent on addressing it. For adequate measures, it is important that the phenomenon of climate change is well understood, especially the effect of adding carbon dioxide to the atmosphere. In this work, a theoretical fully analytical study is presented of the so-called greenhouse effect of carbon dioxide. The effect of this gas in the atmosphere itself was already determined as being of little importance based on empirical analysis. In the current work, the effect is studied both phenomenologically and analytically. In a first attempt of energy transfer by radiation only, it is solved by ideal-gas-law equations and the atmosphere is divided into an infinite number of layers each absorbing and reemitting infrared radiation (surpassing the classical Beer-Lambert analysis of absorption). The result is that the exact structure of the atmosphere is irrelevant for the analysis;we might as well keep the two-box model for any analytical approach. However, the results are unsatisfactory in that they cannot explain the profile of the atmosphere. In a new approach, the atmosphere is solved by taking both radiative as well as thermodynamic processes into account. The model fully fits the empirical data and an analytical equation is given for the atmospheric behavior. Upper limits are found for the greenhouse effect ranging from zero to a couple of mK per ppm CO2. It is shown that it cannot explain the observed correlation of carbon dioxide and surface temperature. This correlation, however, is readily explained by Henry’s Law (outgassing of oceans), with other phenomena insignificant. Finally, while the greenhouse effect can thus, in a rudimentary way, explain the behavior of the atmosphere of Earth, it fails describing other atmospheres such as that of Mars. Moreover, looking at three cities in Spain, it is found that radiation balances only cannot explain the temperature of these cities. Finally, three data sets with different time scales (60 years,
基金supported by the National Natural Science Foundation of China (Grant Nos. 42075028 and 42222502)the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant SML2021SP302)
文摘The Ross-Amundsen sector is experiencing an accelerating warming trend and a more intensive advective influx of marine air streams.As a result,massive surface melting events of the ice shelf are occurring more frequently,which puts the West Antarctica Ice Sheet at greater risk of degradation.This study shows the connection between surface melting and the prominent intrusion of warm and humid air flows from lower latitudes.By applying the Climate Feedback-Response Analysis Method(CFRAM),the temporal surge of the downward longwave(LW)fluxes over the surface of the Ross Ice Shelf(RIS)and adjacent regions are identified for four historically massive RIS surface melting events.The melting events are decomposed to identify which physical mechanisms are the main contributors.We found that intrusions of warm and humid airflow from lower latitudes are conducive to warm air temperature and water vapor anomalies,as well as cloud development.These changes exert a combined impact on the abnormal enhancement of the downward LW surface radiative fluxes,significantly contributing to surface warming and the resultant massive melting of ice.
基金Funded by the National Natural Science Foundation of China(No.20877105)
文摘Atmospheric carbon dioxide concentration [CO2],incoming solar radiation and sea ice coverage are among the most important factors that control the global climate.By applying the simple cell-to-cell mapping technique to a simplified atmosphere-ocean-sea ice feedback climate model,effects of these factors on the stability of the climatic system are studied.The current climatic system is found to be stable but highly nonlinear.The resiliency of stability increases with [CO2] to a summit when [CO2] reaches 290 μL/L which is comparable to the pre-industrial level,suggesting carbon dioxide is essential to the stability of the global climate.With [CO2] rising further,the global climate stability decreases,the mean ocean temperature goes up and the sea ice coverage shrinks in the polar region.When the incoming solar radiation is intensified,the ice coverage gradually diminishes,but the mean ocean temperature remains relatively constant.Overall,our analysis suggests that at the current levels of three external factors the stability of global climate is highly resilient.However,there exists a possibility of extreme states of climate,such as a snow-ball earth and an ice-free earth.
文摘In this paper,the slow orbit feedback system of HLS,including the feedback principle,the hardware,the software and the main operation results,is briefly introduced.With the help of slow orbit feedback system,the vertical orbit stability of HLS is better than 30 microns,which meets the requirement of synchrotron radiation users and is comparable with the international advanced level of orbit stability in the same kind of machines.