The authors discuss problems of approximation to functions in L2(Rn) and operators fromL2(Rn1) to L2(Rn2) by Radial-Basis Functions. The results obtained solve the problem ofcapability of RBF neural networks, a basic ...The authors discuss problems of approximation to functions in L2(Rn) and operators fromL2(Rn1) to L2(Rn2) by Radial-Basis Functions. The results obtained solve the problem ofcapability of RBF neural networks, a basic problem in neural networks.展开更多
Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector ...Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.展开更多
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial...The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.展开更多
为了实现电网故障的准确诊断,首先提出了电网潮流指纹的相关概念和故障潮流指纹识别算法,并在此基础上结合径向基函数(radial-basis function,RBF)神经网络和信息融合技术,提出了一种新的电网故障诊断方法。该方法通过分析电气量信息实...为了实现电网故障的准确诊断,首先提出了电网潮流指纹的相关概念和故障潮流指纹识别算法,并在此基础上结合径向基函数(radial-basis function,RBF)神经网络和信息融合技术,提出了一种新的电网故障诊断方法。该方法通过分析电气量信息实现电网故障诊断,避免了开关量和保护信息的误动、拒动等不确定因素。同时,采用改进的线性整数规划法优化配置同步向量测量单元(phasor measurement unit,PMU),利用PMU实时采集潮流信息,克服了传统数据采集与监控系统(supervisory control and data acquisition,SCADA)数据采集密度低且不同步的缺点,能够把握时间间隔为s级或者ms级的连锁故障本质。仿真算例表明,该方法信息需求量小、准确有效,具有很大的工程实用价值,在电网在线故障诊断领域有很好的应用前景。展开更多
RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The result...RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The results obtained are satisfactory.The method is a powerful aid for designing new steels.展开更多
基金Project supported by the National Natural Science Foundation of Chin
文摘The authors discuss problems of approximation to functions in L2(Rn) and operators fromL2(Rn1) to L2(Rn2) by Radial-Basis Functions. The results obtained solve the problem ofcapability of RBF neural networks, a basic problem in neural networks.
文摘Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110303)the Beijing Municipal Science & Technology Project,China (Grant No. Z111100064311001)
文摘The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.
文摘为了实现电网故障的准确诊断,首先提出了电网潮流指纹的相关概念和故障潮流指纹识别算法,并在此基础上结合径向基函数(radial-basis function,RBF)神经网络和信息融合技术,提出了一种新的电网故障诊断方法。该方法通过分析电气量信息实现电网故障诊断,避免了开关量和保护信息的误动、拒动等不确定因素。同时,采用改进的线性整数规划法优化配置同步向量测量单元(phasor measurement unit,PMU),利用PMU实时采集潮流信息,克服了传统数据采集与监控系统(supervisory control and data acquisition,SCADA)数据采集密度低且不同步的缺点,能够把握时间间隔为s级或者ms级的连锁故障本质。仿真算例表明,该方法信息需求量小、准确有效,具有很大的工程实用价值,在电网在线故障诊断领域有很好的应用前景。
文摘RBF model,a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels.The errors of the ANN model are:MSE 0.052 1,MSRE 17.85%,and VOF 1.932 9.The results obtained are satisfactory.The method is a powerful aid for designing new steels.