In this study,the movement of the maximum wind of Typhoon Rammasun(2014)was measured by the radial movement of the maximum symmetric rotational kinetic energy.The weather research and forecasting(WRF)model was used to...In this study,the movement of the maximum wind of Typhoon Rammasun(2014)was measured by the radial movement of the maximum symmetric rotational kinetic energy.The weather research and forecasting(WRF)model was used to simulate Typhoon Rammasun,and validated simulation data for the lower troposphere were analyzed to examine the physical processes responsible for the radial movement of the maximum wind.The radii,where maximum symmetric rotational kinetic energy and its maximum tendency were located,were compared to explain radial movement.The tendency in the lower troposphere is controlled by the flux convergence of symmetric rotational kinetic energy and the conversion from symmetric divergent kinetic energy to symmetric rotational kinetic energy,as well as frictional dissipation in the symmetric rotational kinetic energy budget.The inward movement before rapid intensification(RI)resulted from radial flux convergence;cyclonic circulation develops while moving inward.Stationary maximum symmetric rotational kinetic energy and RI were caused by the conversion,which was observed to be proportional to the symmetric rotational kinetic energy.Landfall increased terrain-induced friction dissipation,which led to outward movement and ended the RI.展开更多
A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc....A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41930967).
文摘In this study,the movement of the maximum wind of Typhoon Rammasun(2014)was measured by the radial movement of the maximum symmetric rotational kinetic energy.The weather research and forecasting(WRF)model was used to simulate Typhoon Rammasun,and validated simulation data for the lower troposphere were analyzed to examine the physical processes responsible for the radial movement of the maximum wind.The radii,where maximum symmetric rotational kinetic energy and its maximum tendency were located,were compared to explain radial movement.The tendency in the lower troposphere is controlled by the flux convergence of symmetric rotational kinetic energy and the conversion from symmetric divergent kinetic energy to symmetric rotational kinetic energy,as well as frictional dissipation in the symmetric rotational kinetic energy budget.The inward movement before rapid intensification(RI)resulted from radial flux convergence;cyclonic circulation develops while moving inward.Stationary maximum symmetric rotational kinetic energy and RI were caused by the conversion,which was observed to be proportional to the symmetric rotational kinetic energy.Landfall increased terrain-induced friction dissipation,which led to outward movement and ended the RI.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2017YFE0301700)National Natural Science Foundation of China(No.11635008).
文摘A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.