期刊文献+
共找到1,035篇文章
< 1 2 52 >
每页显示 20 50 100
基于新型神经网络的电网故障诊断方法 被引量:129
1
作者 毕天姝 倪以信 +1 位作者 吴复立 杨奇逊 《中国电机工程学报》 EI CSCD 北大核心 2002年第2期73-78,共6页
故障诊断对于事故后系统快速恢复正常运行具有重要的意义。该文提出应用新型径向基函数 (RadialBasisFunc tion ,RBF)神经网络解决故障诊断问题 ,文中将正交最小二乘 (Orthogonalleastsquare)算法扩展用于优化RBF神经网络参数。并应用... 故障诊断对于事故后系统快速恢复正常运行具有重要的意义。该文提出应用新型径向基函数 (RadialBasisFunc tion ,RBF)神经网络解决故障诊断问题 ,文中将正交最小二乘 (Orthogonalleastsquare)算法扩展用于优化RBF神经网络参数。并应用传统的BP神经网络解决同样的问题以进行比较。在 4母线测试系统中的计算机仿真结果证明 ,在解决故障诊断这一类问题时 ,RBF神经网络优于BP神经网络模型 。 展开更多
关键词 电网 故障诊断 电力系统 神经网络
下载PDF
基于RBF神经网络的开关磁阻电机瞬时转矩控制 被引量:59
2
作者 夏长亮 陈自然 李斌 《中国电机工程学报》 EI CSCD 北大核心 2006年第19期127-132,共6页
开关磁阻电机(SRM)因其结构简单、工作可靠、效率高、成本低等优点使之成为当前极具竞争力的一种调速电动机。但由于电机本身的非线性电磁特性,导致了其转矩脉动比其他传动系统严重。如何更好地对开关磁阻电机的转矩进行控制,抑制转矩... 开关磁阻电机(SRM)因其结构简单、工作可靠、效率高、成本低等优点使之成为当前极具竞争力的一种调速电动机。但由于电机本身的非线性电磁特性,导致了其转矩脉动比其他传动系统严重。如何更好地对开关磁阻电机的转矩进行控制,抑制转矩脉动也成为了近年来研究的热点。针对这一问题,提出了一种基于基于径向基函数(radial basis function,RBF)神经网络的开关磁阻电机瞬时转矩控制方法。利用从SRM动态模型仿真中产生的数据来对RBF神经网络进行离线训练,使之学习不同转速和转矩下的优化电流波形,再将训练好的RBF网络用于电机的转矩控制中,完成不同转速下,转矩、位置到电流的非线性映射。最后通过瞬时电流跟踪控制使电机电流跟踪参考电流,完成电机的转矩控制。该控制方法充分利用了RBF神经网络逼近、泛化能力强,运算速度快的优点,且控制过程简单,网络无需在线训练。实验结果证明,该控制策略能有效减小开关磁阻电机的转矩脉动,具有控制精度高、能适应转速变化等优点。 展开更多
关键词 开关磁阻电机 径向基函数神经网络 动态建模 离线训练 瞬时电流跟踪
下载PDF
基于径向基函数神经网络和模糊积分融合的电网分区故障诊断 被引量:53
3
作者 石东源 熊国江 +1 位作者 陈金富 李银红 《中国电机工程学报》 EI CSCD 北大核心 2014年第4期562-569,共8页
为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的... 为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的区域径向基函数神经网络诊断模块,然后利用模糊积分关联融合相连区域关于联络线的诊断输出,实现对联络线的故障诊断。该方法不仅可以诊断各区域内部发生的故障,而且能够有效地诊断区域间联络线发生的故障。算例仿真结果表明:该方法简单、有效,能弥补现有电网分区故障诊断方法在联络线故障诊断方面存在的不足,且能够处理各种复杂故障情况,具有良好的故障容错能力。 展开更多
关键词 大电网 电网分区 故障诊断 径向基函数神经网络 模糊积分
下载PDF
基于径向基函数神经网络的电网模糊元胞故障诊断 被引量:52
4
作者 熊国江 石东源 +1 位作者 朱林 陈祥文 《电力系统自动化》 EI CSCD 北大核心 2014年第5期59-65,共7页
提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路... 提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路器为输入,建立了元胞通用神经网络诊断模型,并给出了故障诊断时模型的自动生成方法。此外,考虑到电网故障信息存在不完备性和不确定性,本文采用模糊矢状图来描述电网元件、保护和断路器之间的逻辑推理关系,并提取出蕴含不确定性的模糊推理规则,用于训练元胞通用神经网络。算例仿真结果表明,该方法简单、有效,能处理各种复杂故障情况,且能有效适应网络拓扑结构的变化,具有良好的容错性和可移植性。 展开更多
关键词 电力系统 元胞故障诊断 径向基函数神经网络 模糊矢状图 可移植性
下载PDF
量子遗传算法优化RBF神经网络及其在热工辨识中的应用 被引量:41
5
作者 董泽 黄宇 韩璞 《中国电机工程学报》 EI CSCD 北大核心 2008年第17期99-104,共6页
量子遗传算法是基于量子计算原理的概率优化方法,在量子门更新过程中,旋转角的大小直接影响优化的结果和进化的速度。文中针对模糊量子遗传算法(FQGA)容易导致系统陷入局部最优的缺点,将量子衍生交叉算法的思想引入FQGA,提出了一种新的... 量子遗传算法是基于量子计算原理的概率优化方法,在量子门更新过程中,旋转角的大小直接影响优化的结果和进化的速度。文中针对模糊量子遗传算法(FQGA)容易导致系统陷入局部最优的缺点,将量子衍生交叉算法的思想引入FQGA,提出了一种新的量子遗传算法。同时利用该方法构造径向基函数神经网络进行非线性系统辨识。其特点是通过这种新的量子遗传算法,实现对RBF神经网络权值、宽度和中心位置等有关参数的估计。其速度快、精度高。通过RBF神经网络有效地完成了对非线性系统的辨识。对典型非线性函数辨识的测试表明:该方法有效地提高了量子遗传算法的计算精度和收敛速度。同时利用该方法设计了一种通用的热工对象模型辨识神经网络算法,编制了专用的模型识别软件,对某电厂循环流化床锅炉一次风对床温的动态特性进行辨识,结果表明该方法是一种精度比较高的辨识算法。 展开更多
关键词 热工过程 系统辨识 径向基函数神经网络 量子遗传算法
下载PDF
用进化RBF神经网络控制二级倒立摆 被引量:13
6
作者 刘妹琴 廖晓昕 +1 位作者 陈际达 李湘林 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第4期593-596,600,共5页
提出了一种应用RBF神经网络和遗传算法相结合的控制算法 ,用于控制二级倒立摆系统 .这种方法把线性控制的条件作为非线性最优控制性能指标的约束条件 ,用改进的遗传算法求解使性能指标最小的RBFNN控制器参数 .仿真结果表明 ,该方案优于... 提出了一种应用RBF神经网络和遗传算法相结合的控制算法 ,用于控制二级倒立摆系统 .这种方法把线性控制的条件作为非线性最优控制性能指标的约束条件 ,用改进的遗传算法求解使性能指标最小的RBFNN控制器参数 .仿真结果表明 ,该方案优于传统的状态反馈方法和模糊控制方法 ,具有更大的稳定域 (0 <θ1,θ2 <2 5 °) ,抗干扰能力更强 . 展开更多
关键词 RBF神经网络 遗传算法 二级倒立摆 自动控制理论
下载PDF
基于RBF神经网络在线辨识的永磁无刷直流电机单神经元PID模型参考自适应控制 被引量:40
7
作者 夏长亮 李志强 +1 位作者 王明超 刘均华 《电工技术学报》 EI CSCD 北大核心 2005年第11期65-69,共5页
永磁无刷直流电机控制系统是多变量和非线性的。针对传统PID控制方法的不足,提出一种基于径向基函数神经网络在线辨识的单神经元PID模型参考自适应控制方法,并用于永磁无刷直流电机的控制中。该方法构造了一个径向基函数神经网络对系统... 永磁无刷直流电机控制系统是多变量和非线性的。针对传统PID控制方法的不足,提出一种基于径向基函数神经网络在线辨识的单神经元PID模型参考自适应控制方法,并用于永磁无刷直流电机的控制中。该方法构造了一个径向基函数神经网络对系统进行在线辨识,建立其在线参考模型,由单神经元控制器完成控制器参数的自学习,并在数字信号处理器中实现控制参数的在线调节。系统较好地实现了给定速度参考模型的自适应跟踪,结构简单,能适应环境变化,具有较强的鲁棒性。 展开更多
关键词 永磁无刷直流电机 单神经元 径向基函数神经网络 PID控制
下载PDF
温室温度控制系统的RBF神经网络PID控制 被引量:42
8
作者 申超群 杨静 《控制工程》 CSCD 北大核心 2017年第2期361-364,共4页
针对温室温度控制系统存在非线性、时变、大滞后与大惯性等问题,传统的PID控制方法并不能满足温室温度控制系统强自适应力、强鲁棒性的要求,提出了一种自适应能力强的径向基神经网络(RBF)PID的控制策略。建立了3层的神经网络模型,在RBF... 针对温室温度控制系统存在非线性、时变、大滞后与大惯性等问题,传统的PID控制方法并不能满足温室温度控制系统强自适应力、强鲁棒性的要求,提出了一种自适应能力强的径向基神经网络(RBF)PID的控制策略。建立了3层的神经网络模型,在RBF神经网络PID控制过程中,由神经网络RBF在线辨识得到了梯度信息,然后由得到的梯度信息对PID中的三个参数进行在线调整。仿真结果表明,基于RBF-PID控制系统动态响应快、自适应性强、超调量小、稳态精度高,能够实现温室温度的自适应控制。 展开更多
关键词 温室温度 径向基神经网络 PID 参数
下载PDF
基于遗传算法和径向基函数神经网络的转炉炼钢模型 被引量:16
9
作者 陶钧 谢书明 柴天佑 《系统仿真学报》 EI CAS CSCD 2000年第3期241-244,277,共5页
针对转炉传统模型的弱点 ,本文在转炉建模过程中引入了遗传算法和径向基函数神经网络 ,由遗传算法辨识转炉过程的脱碳与升温模型 ,并利用径向基函数神经网络及时补偿辨识模型的误差。实际结果表明这一方法效果明显。
关键词 转炉炼钢 遗传算法 径向基函数 神经网络
下载PDF
基于混合递阶遗传算法的径向基神经网络学习算法及其应用 被引量:27
10
作者 石红瑞 刘勇 +1 位作者 刘宝坤 李光泉 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第4期627-630,共4页
在研究径向基神经网络学习算法的基础上 ,提出了一种新型的径向基神经网络学习算法———混合递阶遗传算法 .该算法将递阶遗传算法和最小二乘法的优点结合在一起 ,能够同时确定径向基神经网络的结构和参数 ,并具有较高的学习效率 .采用... 在研究径向基神经网络学习算法的基础上 ,提出了一种新型的径向基神经网络学习算法———混合递阶遗传算法 .该算法将递阶遗传算法和最小二乘法的优点结合在一起 ,能够同时确定径向基神经网络的结构和参数 ,并具有较高的学习效率 .采用基于混合递阶遗传算法的径向基神经网络对混沌时间序列学习和预测 ,取得了较好的效果 . 展开更多
关键词 混合递阶遗传算法 径向基神经网络 学习算法 混沌时间序列
下载PDF
基于RBF网络的风电机组变桨距滑模控制 被引量:37
11
作者 秦斌 周浩 +1 位作者 杜康 王欣 《电工技术学报》 EI CSCD 北大核心 2013年第5期37-41,共5页
由于风速的随机性、风电机组参数的时变性、系统的非线性以及时滞性,造成风电机组输出功率的不稳定。为改善系统在恒功率输出运行区域内的动态性能,在分析风力发电系统变桨距控制研究现状的基础上,提出了一种基于RBF神经网络的变桨距滑... 由于风速的随机性、风电机组参数的时变性、系统的非线性以及时滞性,造成风电机组输出功率的不稳定。为改善系统在恒功率输出运行区域内的动态性能,在分析风力发电系统变桨距控制研究现状的基础上,提出了一种基于RBF神经网络的变桨距滑模控制方案。采用模糊C-均值(FCM)聚类法和递推最小二乘法(RLS)离线学习得到网络初始参数,并把滑模误差引入到变桨距滑模控制自适应律中,在线调整RBF网络中心和权值以改善系统的动态性能。该方法不仅具有滑模控制的抗干扰、对变化参数鲁棒性强以及速度快等优点,神经网络控制的加入还有效地抑制了滑模变结构控制所引起的桨距角抖振现象。构建了风力发电系统变桨距控制模型并进行仿真,结果表明基于RBF神经网络的变桨距滑模控制器具有良好的动态性能及对风速扰动的鲁棒性,可以有效改善系统的桨距控制效果。 展开更多
关键词 风力发电系统 桨距角控制 RBF神经网络 滑模控制 抖振
下载PDF
基于粗糙集理论的遗传-RBF神经网络在岩爆预测中的应用 被引量:36
12
作者 张乐文 张德永 +1 位作者 李术才 邱道宏 《岩土力学》 EI CAS CSCD 北大核心 2012年第S1期270-276,共7页
岩爆发生机制复杂,影响因素较多,通过粗糙集理论中的属性约简和条件属性重要性评价,确定特定地质条件下岩爆的主要影响因素,删除冗余数据。使用遗传算法(GA)优化径向基函数(radial basis function,简称RBF)神经网络参数,通过RBF神经网... 岩爆发生机制复杂,影响因素较多,通过粗糙集理论中的属性约简和条件属性重要性评价,确定特定地质条件下岩爆的主要影响因素,删除冗余数据。使用遗传算法(GA)优化径向基函数(radial basis function,简称RBF)神经网络参数,通过RBF神经网络隐层单元将低维模式输入变换到高维空间内,拟合影响因子和岩爆等级之间的非线性映射关系,建立基于粗糙集理论的遗传-RBF神经网络岩爆预测模型,目前未见其在地下洞室岩爆预测中应用。在根据工程实际情况选取多个理论判据的基础上,将建立的预测模型应用于实际工程的岩爆预测问题,并与实际岩爆发生情况进行对比分析。结果证明,该方法的评价结果与实际情况较为吻合,对后期施工有较好的指导作用。 展开更多
关键词 岩爆预测 粗糙集理论 遗传算法 径向基函数神经网络 引水隧洞
下载PDF
径向基神经网络解决威胁排序问题 被引量:30
13
作者 王向华 覃征 +1 位作者 刘宇 史哲文 《系统仿真学报》 CAS CSCD 2004年第7期1576-1579,共4页
在空战威胁估计中,把一架战机的态势量化为一个向量,每一个决策因素为一个分量。确定各因素之间的相对重要程度,是合成综合威胁指数,完成威胁排序的关键。本文使用径向基神经网络确定各个因素之间的非线性复杂关系。使用层次分析法生成... 在空战威胁估计中,把一架战机的态势量化为一个向量,每一个决策因素为一个分量。确定各因素之间的相对重要程度,是合成综合威胁指数,完成威胁排序的关键。本文使用径向基神经网络确定各个因素之间的非线性复杂关系。使用层次分析法生成初始的(战机态势量化向量、综合威胁指数)训练样本对。然后使用样本校正器对不合理的样本对自动进行校正。调整后的综合威胁指数,作为最终的学习样本的目标值,以供径向基神经网络训练使用。实验表明,径向基神经网络可以很好的逼近各个因素之间的权重关系。 展开更多
关键词 径向基神经网络 层次分析法 威胁估计 威胁排序 空战态势
下载PDF
RBF神经网络算法及其应用 被引量:27
14
作者 张顶学 刘新芝 关治洪 《石油化工高等学校学报》 EI CAS 2007年第3期86-88,共3页
在径向基神经网络学习算法的基础上,提出了一种新的RBF神经网络学习算法,该算法将变长度染色体遗传算法和最小二乘法相结合,能够同时确定径向基神经网络的结构和参数。用此方法建立热电厂热负荷预测模型,并与BP神经网络和增长型结构学... 在径向基神经网络学习算法的基础上,提出了一种新的RBF神经网络学习算法,该算法将变长度染色体遗传算法和最小二乘法相结合,能够同时确定径向基神经网络的结构和参数。用此方法建立热电厂热负荷预测模型,并与BP神经网络和增长型结构学习算法的RBF神经网络方法相比较,结果表明可以取得更好的效果。 展开更多
关键词 RBF神经网络 遗传算法 最小二乘法 BP神经网络 热负荷
下载PDF
基于红外与紫外图像信息融合的绝缘子污秽状态识别 被引量:31
15
作者 金立军 张达 +1 位作者 段绍辉 姚森敬 《电工技术学报》 EI CSCD 北大核心 2014年第8期309-318,共10页
为了实现绝缘子污秽状态的非接触检测,提出了一种基于红外与紫外图像信息决策级融合的污秽等级识别方法。分别计算不同污秽等级绝缘子红外与紫外图像特征,根据Fisher准则进行特征选择,得到可以有效表征污秽状态的特征量,为了提高分类器... 为了实现绝缘子污秽状态的非接触检测,提出了一种基于红外与紫外图像信息决策级融合的污秽等级识别方法。分别计算不同污秽等级绝缘子红外与紫外图像特征,根据Fisher准则进行特征选择,得到可以有效表征污秽状态的特征量,为了提高分类器的运算速度和准确性,利用核主元分析(KPCA)进行特征提取,分别得到红外与紫外特征的三维核主元向量,使用径向基神经网络(RBFNN)分别进行污秽等级识别,利用D-S证据理论对识别结果进行决策级融合,实现绝缘子污秽等级的识别。实验结果表明,该方法的正确率显著优于单独使用红外或紫外特征进行识别,为绝缘子污秽状态的非接触检测提供了新的方法。 展开更多
关键词 污秽状态 决策级融合 FISHER准则 核主元分析 径向基神经网络
下载PDF
结构优化的RBF神经网络学习算法 被引量:13
16
作者 沈谦 王涛 《微电子学与计算机》 CSCD 北大核心 2000年第4期14-18,共5页
文章提出了一种自动“删减”隐层神经元的RBF神经网络学习算法。模拟结果表明,该算法训练的RBF网络不仅结构得以优化,同时性能良好,可以成功地应用于模式分类和时间序列预测问题中。
关键词 RBF神经网络 学习算法 结构优化 隐单元个数
下载PDF
基于模糊RBF神经网络的函数逼近 被引量:16
17
作者 刘昆 颜钢锋 《计算机工程》 CAS CSCD 北大核心 2001年第2期70-71,共2页
提出了一种模糊RBF网络,将模糊逻辑的知识表达以及推理能力和RBF网络的快速学习和泛化能力结合起来,网络结构参数可按实际问题调整,仿真表明网络具有较快的学习速度和较高的函数逼近精度。
关键词 径向基函数神经网络 模糊逻辑 函数逼近 RBF网络
下载PDF
基于经验模态分解与RBF 神经网络的短期风功率预测 被引量:29
18
作者 王佶宣 邓斌 王江 《电力系统及其自动化学报》 CSCD 北大核心 2020年第11期109-115,共7页
风功率预测的准确性对优化电力系统调度、促进新能源消纳与增强电力系统稳定性有重要意义。针对风功率预测准确度问题,提出了一种基于经验模态分解与径向基神经网络的短期风功率预测方法。首先,采用小波变换对风功率历史数据进行去噪处... 风功率预测的准确性对优化电力系统调度、促进新能源消纳与增强电力系统稳定性有重要意义。针对风功率预测准确度问题,提出了一种基于经验模态分解与径向基神经网络的短期风功率预测方法。首先,采用小波变换对风功率历史数据进行去噪处理,利用经验模态分解将去噪后的历史数据分解为多个模态分量序列。然后,在考虑多种气象因素的条件下分别构建径向基神经网络对各分量序列进行分项预测。最后,叠加各网络输出得到预测结果。基于张家口某风电场的风功率与气象数据,以均方根误差和平均绝对百分误差作为评价指标对本算法进行测试。结果表明,分解后的风功率分量序列具有较强的规律性,预测精确度高于其他4种传统预测算法,证明了本算法的有效性。 展开更多
关键词 风功率预测 经验模态分解 径向基神经网络 小波变换
下载PDF
多组群教学优化算法-神经网络-支持向量机组合模型在径流预测中的应用 被引量:27
19
作者 崔东文 《水利水电科技进展》 CSCD 北大核心 2019年第4期41-48,84,共9页
采用5个标准测试函数对多组群教学优化(MGTLO)算法进行仿真验证,并将仿真结果与基本教学优化(TLBO)算法、混合蛙跳算法(SFLA)、差分进化(DE)算法和粒子群优化(PSO)算法的仿真结果进行对比。利用MGTLO算法搜寻基于广义回归神经网络(GRNN... 采用5个标准测试函数对多组群教学优化(MGTLO)算法进行仿真验证,并将仿真结果与基本教学优化(TLBO)算法、混合蛙跳算法(SFLA)、差分进化(DE)算法和粒子群优化(PSO)算法的仿真结果进行对比。利用MGTLO算法搜寻基于广义回归神经网络(GRNN)、径向基神经网络(RBF)、支持向量机(SVM)模型单元的组合模型的最佳模型参数和组合权重系数,提出MGTLO-GRNN-RBF、MGTLO-GRNN-SVM、MGTLO-RBF-SVM、MGTLO-GRNN-RBF-SVM 4种组合预测模型,以新疆伊犁河雅马渡水文站和云南省某水文站年径流量预测为例进行了实例分析,并将预测结果与MGTLO-GRNN、MGTLO-RBF、MGTLO-SVM和GRNN、RBF、SVM 6种单一模型的结果进行对比分析。结果表明:MGTLO算法寻优精度优于TLBO、SFLA、DE和PSO算法,具有较好的收敛速度和全局极值寻优能力;组合模型融合了MGTLO算法与GRNN、RBF、SVM模型单元的优点,在预测精度、泛化能力等方面均优于单一模型;MGTLO算法能有效优化各组合模型的相关参数和权重系数,MGTLO-GRNN-RBF-SVM模型预测精度最高。 展开更多
关键词 径流预测 多组群教学优化算法 广义回归神经网络 径向基神经网络 支持向量机 参数优化
下载PDF
RBF神经网络的一种鲁棒学习算法 被引量:9
20
作者 刘妹琴 廖晓昕 《华中理工大学学报》 CSCD 北大核心 2000年第2期8-10,共3页
用定标鲁棒代价函数代替传统的二次型指标 ,并结合改进的遗传算法 ,搜索近最优径向基函数神经网络 ( RBFNN)的结构和参数 .实验结果表明该训练方法比其他方法具有更强的鲁棒性 ,可提高 RBFNN的泛化能力 ,自动消除训练数据中的噪声 ,再... 用定标鲁棒代价函数代替传统的二次型指标 ,并结合改进的遗传算法 ,搜索近最优径向基函数神经网络 ( RBFNN)的结构和参数 .实验结果表明该训练方法比其他方法具有更强的鲁棒性 ,可提高 RBFNN的泛化能力 ,自动消除训练数据中的噪声 ,再现训练数据中的潜在规律 . 展开更多
关键词 改进遗传算法 RBF神经网络 鲁棒学习算法
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部