In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2...In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%).展开更多
A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering me...A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus,cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agreement in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency(24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency.展开更多
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(Septembe...In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.展开更多
A radar task priority assignment method based on interval type-2 fuzzy logic system(IT2 FLS)was designed to solve the problem of resource management for phased-array radar to detect hypersonic-glide vehicles(HGVs).The...A radar task priority assignment method based on interval type-2 fuzzy logic system(IT2 FLS)was designed to solve the problem of resource management for phased-array radar to detect hypersonic-glide vehicles(HGVs).The mathematical model of the radar task and the motion and detection models of HGVs are described in detail.The target threat of an HGV is divided into maneuver,speed,azimuth,and distance threats.In the radar task priority assignment method based on IT2 FLS,the maneuver factor,speed,azimuth difference,distance,and initial priority are input variables.The radar task priority is the output variable.To reduce the number of fuzzy rules and avoid rule explosion,an IT2 FLS with a hierarchical structure was designed.Finally,the feasibility of the task priority assignment method was verified by simulations.Simulation results showed that the method based on IT2 FLS has a higher precise tracking rate,mean initial priority,and target threat degree,and a shorter offset time.展开更多
基金funded by the National Natural Science Foundation of China project (Grant Nos.42275140, 42230612, 91837310, 92037000)the Second Tibetan Plateau Scientific Expedition and Research (STEP) program(Grant No. 2019QZKK0104)。
文摘In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%).
基金supported by the National Natural Science Foundation of China (Grant Nos. 41775032 and 41275040)
文摘A cloud clustering and classification algorithm is developed for a ground-based Ka-band radar system in the vertically pointing mode. Cloud profiles are grouped based on the combination of a time–height clustering method and the k-means clustering method. The cloud classification algorithm, developed using a fuzzy logic method, uses nine physical parameters to classify clouds into nine types: cirrostratus, cirrocumulus, altocumulus, altostratus, stratus, stratocumulus, nimbostratus,cumulus or cumulonimbus. The performance of the clustering and classification algorithm is presented by comparison with all-sky images taken from January to June 2014. Overall, 92% of the cloud profiles are clustered successfully and the agreement in classification between the radar system and the all-sky imager is 87%. The distribution of cloud types in Beijing from January 2014 to December 2017 is studied based on the clustering and classification algorithm. The statistics show that cirrostratus clouds have the highest occurrence frequency(24%) among the nine cloud types. High-level clouds have the maximum occurrence frequency and low-level clouds the minimum occurrence frequency.
基金supported by the principal project, “Development and application of technology for weather forecasting (NIMR-2012-B-1)” of the National Institute of Meteorological Sciences of the Korea Meteorological Administration
文摘In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.
基金Project supported by the Military Key Project(No.JY2019B137)。
文摘A radar task priority assignment method based on interval type-2 fuzzy logic system(IT2 FLS)was designed to solve the problem of resource management for phased-array radar to detect hypersonic-glide vehicles(HGVs).The mathematical model of the radar task and the motion and detection models of HGVs are described in detail.The target threat of an HGV is divided into maneuver,speed,azimuth,and distance threats.In the radar task priority assignment method based on IT2 FLS,the maneuver factor,speed,azimuth difference,distance,and initial priority are input variables.The radar task priority is the output variable.To reduce the number of fuzzy rules and avoid rule explosion,an IT2 FLS with a hierarchical structure was designed.Finally,the feasibility of the task priority assignment method was verified by simulations.Simulation results showed that the method based on IT2 FLS has a higher precise tracking rate,mean initial priority,and target threat degree,and a shorter offset time.