Tetracycline(TC)is an antibiotic mainly used in livestock production and respiratory infection.Traditional methods are not effective in removing TC from solution.In this study,TC was degraded by gas–liquid plasma in ...Tetracycline(TC)is an antibiotic mainly used in livestock production and respiratory infection.Traditional methods are not effective in removing TC from solution.In this study,TC was degraded by gas–liquid plasma in the presence of rGO-TiO_(2)in solution.The rGO-TiO_(2)was prepared by modified hummers and hydrothermal method.The electrical and optical properties of the gas–liquid discharge plasma were studied and the produced long-lived reactive species were analyzed by spectrophotometer.The degradation efficiency of TC was improved by 41.4%after plasma treatment for 12 min in presence of 30 mg l-1 r GO-TiO_(2)compared to that with plasma alone.The degradation efficiency increased with increasing discharge power,but as the initial concentration was increased from 20 to 80 mg l-1,the degradation efficiency of TC decreased.The initial p H had no significant effect on the degradation of TC.The intermediate products were determined by UV–vis spectrophotometry and ESI(+)–MS,and the degradation mechanism was analyzed.The reactive species,including O_(3),·OH,and H_(2)O_(2),etc.,produced in the plasma/catalyst system attracted electron-rich functional groups(amino group,aromatic ring,and double bond).Therefore,the gas–liquid plasma/catalyst system could be an effective and promising method for pharmaceutical wastewater treatment in future.展开更多
In this work,a hierarchical porous SnS_(2)/rGO/TiO_(2)hollow sphere heterojunction that allows highly-efficient light utilization and shortening distance of charge transformation is rationally designed and synthesized...In this work,a hierarchical porous SnS_(2)/rGO/TiO_(2)hollow sphere heterojunction that allows highly-efficient light utilization and shortening distance of charge transformation is rationally designed and synthesized.More importantly,an rGO interlayer is successfully embedded between the TiO_(2)hollow sphere shells and outermost SnS_(2)nanosheets.This interlayer functions as a bridge to connect the two light-harvesting semiconductors and acts as a hole injection layer in the tandem heterojunction.The induced built-in electric fields on both sides of the interface precisely regulate the spatial separation and directional migration of the photo-generated holes from the light-harvesting semiconductor to the rGO hole injection interlayer.These synergistic effects greatly prolong the lifetime of the photo-induced charge carriers.The optimized tandem heterojunction with a 2 wt%rGO loading demonstrate enhanced visible-light-driven photocatalytic activity for Rhodamine B(RhB)dye degradation(removal rate:97.3%)and Cr(VI)reduction(removal rate:97.09%).This work reveals a new strategy for the rational design and assembly of hollow-structured photocatalytic materials with spatially separated reduction and oxidation surfaces to achieve excellent photocatalytic performance.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.51777206 and 51541807)Natural Science Foundation of Anhui Province(Nos.1908085MA29,1708085MB47 and 1708085MA13)+4 种基金Doctoral Fund of Ministry of Education of China(No.2017M612058)Specialized Research Fund for the Doctoral Program of Hefei University of Technology(No.JZ2016HGBZ0769)Chinese Academy of Sciences under Grant No.DSJJ-14-YY02Science and Technology Cooperation Program between China and Finland(No.2017YFE0115200)Hong Kong Research Grants Council(RGC)General Research Funds(GRF)(No.City U 11205617)。
文摘Tetracycline(TC)is an antibiotic mainly used in livestock production and respiratory infection.Traditional methods are not effective in removing TC from solution.In this study,TC was degraded by gas–liquid plasma in the presence of rGO-TiO_(2)in solution.The rGO-TiO_(2)was prepared by modified hummers and hydrothermal method.The electrical and optical properties of the gas–liquid discharge plasma were studied and the produced long-lived reactive species were analyzed by spectrophotometer.The degradation efficiency of TC was improved by 41.4%after plasma treatment for 12 min in presence of 30 mg l-1 r GO-TiO_(2)compared to that with plasma alone.The degradation efficiency increased with increasing discharge power,but as the initial concentration was increased from 20 to 80 mg l-1,the degradation efficiency of TC decreased.The initial p H had no significant effect on the degradation of TC.The intermediate products were determined by UV–vis spectrophotometry and ESI(+)–MS,and the degradation mechanism was analyzed.The reactive species,including O_(3),·OH,and H_(2)O_(2),etc.,produced in the plasma/catalyst system attracted electron-rich functional groups(amino group,aromatic ring,and double bond).Therefore,the gas–liquid plasma/catalyst system could be an effective and promising method for pharmaceutical wastewater treatment in future.
文摘In this work,a hierarchical porous SnS_(2)/rGO/TiO_(2)hollow sphere heterojunction that allows highly-efficient light utilization and shortening distance of charge transformation is rationally designed and synthesized.More importantly,an rGO interlayer is successfully embedded between the TiO_(2)hollow sphere shells and outermost SnS_(2)nanosheets.This interlayer functions as a bridge to connect the two light-harvesting semiconductors and acts as a hole injection layer in the tandem heterojunction.The induced built-in electric fields on both sides of the interface precisely regulate the spatial separation and directional migration of the photo-generated holes from the light-harvesting semiconductor to the rGO hole injection interlayer.These synergistic effects greatly prolong the lifetime of the photo-induced charge carriers.The optimized tandem heterojunction with a 2 wt%rGO loading demonstrate enhanced visible-light-driven photocatalytic activity for Rhodamine B(RhB)dye degradation(removal rate:97.3%)and Cr(VI)reduction(removal rate:97.09%).This work reveals a new strategy for the rational design and assembly of hollow-structured photocatalytic materials with spatially separated reduction and oxidation surfaces to achieve excellent photocatalytic performance.