Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteri...Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.展开更多
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola...Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.展开更多
To improve the low-frequency vibration reduction effect of a steel spring floating slab track(FST),nonlinear quasizero-stiffness(QZS)vibration isolators composed of positive stiffness elements(PSEs)and negative stiffn...To improve the low-frequency vibration reduction effect of a steel spring floating slab track(FST),nonlinear quasizero-stiffness(QZS)vibration isolators composed of positive stiffness elements(PSEs)and negative stiffness elements(NSEs)were used to support the FST.First,considering the mechanical characteristics of the nonlinear QZS vibration isolators and the dynamic displacement limit(3 mm)of the FST,the feasible parameter groups were studied with the nonlinear stiffness variation range and bearing capacity as evaluation indices.A vertical vehicle quasi-zero-stiffness floating slab track(QZS-FST)coupled dynamic model was then established.To obtain a reasonable nonlinear stiffness within a few millimeters,the original length of the NSEs must be analyzed first,because it chiefly determines the stiffness nonlinearity level.The compression length of the NSEs at the equilibrium position must be determined to obtain the low stiffness of the floating slab without vehicle load.Meanwhile,to meet the dynamic displacement limit of the FST,the PSE stiffness must be increased to obtain a higher stiffness at the critical dynamic displacement.Various stiffness groups for the PSEs and NSEs can provide the same dynamic bearing capacity and yet have a significantly different vibration reduction effect.Excessive stiffness nonlinearity levels cannot effectively improve the vibration reduction effect at the natural frequency.Furthermore,they also significantly amplify the vibrations above the natural frequency.In this paper,the vertical vibration acceleration level(VAL)of the floating slab and the supporting force of the FST can be decreased by 6.9 dB and 55%,respectively,at the resonance frequency.展开更多
基金Supported by National Science and Technology Major Project(2013ZX02104003)
文摘Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper. It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed. The dynamic equation of its motion has been obtained based on Newton's second law. After definition of a error margin,the dynamic equation of the motion can be treated as a Duffing oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied. The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed. Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.
基金the National Natural Science Foundation of China(No.52175125)。
文摘Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.
基金Project supported by the National Natural Science Foundation of China(Nos.5197858351425804+2 种基金51578468and 51608460)the Open Foundation of State Key Laboratory for Track Technology of High-speed Railway(No.2018YJ180)。
文摘To improve the low-frequency vibration reduction effect of a steel spring floating slab track(FST),nonlinear quasizero-stiffness(QZS)vibration isolators composed of positive stiffness elements(PSEs)and negative stiffness elements(NSEs)were used to support the FST.First,considering the mechanical characteristics of the nonlinear QZS vibration isolators and the dynamic displacement limit(3 mm)of the FST,the feasible parameter groups were studied with the nonlinear stiffness variation range and bearing capacity as evaluation indices.A vertical vehicle quasi-zero-stiffness floating slab track(QZS-FST)coupled dynamic model was then established.To obtain a reasonable nonlinear stiffness within a few millimeters,the original length of the NSEs must be analyzed first,because it chiefly determines the stiffness nonlinearity level.The compression length of the NSEs at the equilibrium position must be determined to obtain the low stiffness of the floating slab without vehicle load.Meanwhile,to meet the dynamic displacement limit of the FST,the PSE stiffness must be increased to obtain a higher stiffness at the critical dynamic displacement.Various stiffness groups for the PSEs and NSEs can provide the same dynamic bearing capacity and yet have a significantly different vibration reduction effect.Excessive stiffness nonlinearity levels cannot effectively improve the vibration reduction effect at the natural frequency.Furthermore,they also significantly amplify the vibrations above the natural frequency.In this paper,the vertical vibration acceleration level(VAL)of the floating slab and the supporting force of the FST can be decreased by 6.9 dB and 55%,respectively,at the resonance frequency.