开展钢筋混凝土薄壁空心桥墩抗震问题的研究,对保证大型桥梁结构抗震安全具有重要意义。首先设计2个矩形薄壁空心墩试件,分别进行定轴力和变轴力下的拟静力试验,发现试件前期破坏以弯曲和剪切开裂为主,其后发生混凝土压碎脱落,纵筋屈曲...开展钢筋混凝土薄壁空心桥墩抗震问题的研究,对保证大型桥梁结构抗震安全具有重要意义。首先设计2个矩形薄壁空心墩试件,分别进行定轴力和变轴力下的拟静力试验,发现试件前期破坏以弯曲和剪切开裂为主,其后发生混凝土压碎脱落,纵筋屈曲等现象;最终试件薄壁发生突然的失稳破坏,引起桥墩倒塌。基于薄壁空心墩试验结果对国内外主要桥梁抗震设计规范和学者们提出的抗剪分析模型进行对比分析,认为我国《公路桥梁抗震设计细则》和欧洲Eurocode 8规范较为准确的计算了各试件抗剪强度或得到偏于保守的结果,可用于薄壁空心墩的抗剪设计;UCSD模型和Aschhiem模型高估了试件的抗剪能力,不适合于对薄壁空心桥墩的抗剪强度分析,而提出的改进的UCSD模型很好的预测了薄壁空心墩的抗剪强度。修正的压力场理论(Modified Compression Field Theory,MCFT)计算的薄壁空心墩抗剪强度最为准确。展开更多
Flexible pipelines are often used to connect hard pipes from a foundation to a superstructure to accommodate large deformation in the base isolation layer during an earthquake. Although Chinese seismic design guidelin...Flexible pipelines are often used to connect hard pipes from a foundation to a superstructure to accommodate large deformation in the base isolation layer during an earthquake. Although Chinese seismic design guidelines suggest several confi gurations, they are diff erent from the designs that have been proven in practice, e.g., Japanese styles, and extensive experimental investigation into their seismic performance is required. Three types of seals, rubber-, metal- and asbestinebased, were tested quasi-statically with infi lled pressurized water at 2.5 MPa. The asbestine-based seal leaked at a smaller deformation than the other two types of seals. Based on the test results, three damage states were defi ned and the deformation capacity was estimated. To evaluate their performance, a three-dimensional model of a base-isolated medical building was developed using OpenSees, with the fl exible pipelines simulated by a mechanical model calibrated from the experimental data. A probabilistic seismic demand model and the fragility function of the fl exible pipelines were then developed to evaluate the seismic performance.展开更多
文摘开展钢筋混凝土薄壁空心桥墩抗震问题的研究,对保证大型桥梁结构抗震安全具有重要意义。首先设计2个矩形薄壁空心墩试件,分别进行定轴力和变轴力下的拟静力试验,发现试件前期破坏以弯曲和剪切开裂为主,其后发生混凝土压碎脱落,纵筋屈曲等现象;最终试件薄壁发生突然的失稳破坏,引起桥墩倒塌。基于薄壁空心墩试验结果对国内外主要桥梁抗震设计规范和学者们提出的抗剪分析模型进行对比分析,认为我国《公路桥梁抗震设计细则》和欧洲Eurocode 8规范较为准确的计算了各试件抗剪强度或得到偏于保守的结果,可用于薄壁空心墩的抗剪设计;UCSD模型和Aschhiem模型高估了试件的抗剪能力,不适合于对薄壁空心桥墩的抗剪强度分析,而提出的改进的UCSD模型很好的预测了薄壁空心墩的抗剪强度。修正的压力场理论(Modified Compression Field Theory,MCFT)计算的薄壁空心墩抗剪强度最为准确。
基金Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant Nos.2016A05 and 2016A06the International Science and Technology Cooperation Program of China under Grant No.2014DFA70950the National Natural Science Foundation of China under Grant No.51378478
文摘Flexible pipelines are often used to connect hard pipes from a foundation to a superstructure to accommodate large deformation in the base isolation layer during an earthquake. Although Chinese seismic design guidelines suggest several confi gurations, they are diff erent from the designs that have been proven in practice, e.g., Japanese styles, and extensive experimental investigation into their seismic performance is required. Three types of seals, rubber-, metal- and asbestinebased, were tested quasi-statically with infi lled pressurized water at 2.5 MPa. The asbestine-based seal leaked at a smaller deformation than the other two types of seals. Based on the test results, three damage states were defi ned and the deformation capacity was estimated. To evaluate their performance, a three-dimensional model of a base-isolated medical building was developed using OpenSees, with the fl exible pipelines simulated by a mechanical model calibrated from the experimental data. A probabilistic seismic demand model and the fragility function of the fl exible pipelines were then developed to evaluate the seismic performance.