Effects of second harmonic generation (SHG) and cascaded second harmonic generation/difference frequency generation(cSHG/DFG) based on the quasi-phase-matching (QPM) condition in periodically poled lithium nioba...Effects of second harmonic generation (SHG) and cascaded second harmonic generation/difference frequency generation(cSHG/DFG) based on the quasi-phase-matching (QPM) condition in periodically poled lithium niobate (PPLN) waveguide were investigated experimentally. SHG conversion efficiency of -13.6dB and QPM bandwidth of 0.45nm were achieved using a 16.1dBm power of fundamental wave at 1550.4nm. Using pulsed all-fiber passive mode locked laser and tunable continuous wave laser, cSHG/DFG effect utilized for optical sampling was observed. Conversion efficiencies were calculated, and 11.88nm-wide QPM bandwidth was achieved through changing the wavelength of input signal. Conversion efficiency of cSHG/DFG effect increased linearly with the total injected power.展开更多
Lithium niobate (LiNbO3) is a useful photonic material for its electro-optic and nonlinear optical properties. In this paper, I will report developments of LiNbO3 based optical devices for fiber communication, inclu...Lithium niobate (LiNbO3) is a useful photonic material for its electro-optic and nonlinear optical properties. In this paper, I will report developments of LiNbO3 based optical devices for fiber communication, including high-performance modulators and high efficiency wavelength converters.展开更多
The Quasi-phase-matching periodically poled flux-grown KTP by high electrical field method is researched. A 8×5×1mm3,∧=9.0μm PPKTP wafer is successfully fabricated for the first order QPM SHG. The interact...The Quasi-phase-matching periodically poled flux-grown KTP by high electrical field method is researched. A 8×5×1mm3,∧=9.0μm PPKTP wafer is successfully fabricated for the first order QPM SHG. The interactive length of the sample is about 3mm. The SHG scheme of Nd: YAG at 1064nm tested that the output power of cw 532nm green light is 0.2mw at room temperature with fundamental power of 1.2w. The normalized conversion efficiency is about 0.09% (W·cm)-1.展开更多
基金Supported by the National Natural Science Foundation of China(6077702460978007)
文摘Effects of second harmonic generation (SHG) and cascaded second harmonic generation/difference frequency generation(cSHG/DFG) based on the quasi-phase-matching (QPM) condition in periodically poled lithium niobate (PPLN) waveguide were investigated experimentally. SHG conversion efficiency of -13.6dB and QPM bandwidth of 0.45nm were achieved using a 16.1dBm power of fundamental wave at 1550.4nm. Using pulsed all-fiber passive mode locked laser and tunable continuous wave laser, cSHG/DFG effect utilized for optical sampling was observed. Conversion efficiencies were calculated, and 11.88nm-wide QPM bandwidth was achieved through changing the wavelength of input signal. Conversion efficiency of cSHG/DFG effect increased linearly with the total injected power.
文摘Lithium niobate (LiNbO3) is a useful photonic material for its electro-optic and nonlinear optical properties. In this paper, I will report developments of LiNbO3 based optical devices for fiber communication, including high-performance modulators and high efficiency wavelength converters.
基金This work is supported by scientific research key project fund of Ministry of Education (02042)
文摘The Quasi-phase-matching periodically poled flux-grown KTP by high electrical field method is researched. A 8×5×1mm3,∧=9.0μm PPKTP wafer is successfully fabricated for the first order QPM SHG. The interactive length of the sample is about 3mm. The SHG scheme of Nd: YAG at 1064nm tested that the output power of cw 532nm green light is 0.2mw at room temperature with fundamental power of 1.2w. The normalized conversion efficiency is about 0.09% (W·cm)-1.