The quasi-periodic perturbation for the Duffing's equation with two external forcing terms has been discussed. The second order averaging method and sub-harmonic Melnikov's method through the medium of the ave...The quasi-periodic perturbation for the Duffing's equation with two external forcing terms has been discussed. The second order averaging method and sub-harmonic Melnikov's method through the medium of the averaging mrthod have been applied to detect the existence of quasiperiodic solutions and sub-harmonic bifurcation for the system. Sub-harmonic bifurcation curves are given by using numerical computation for sub-harmonic Melnikov's function.展开更多
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium...In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.展开更多
In this paper, we are concerned with the boundedness of all the solutions ofthe equation x' + ax^+ - bx^- + φ(x) = p(t), where p(t) is a smooth 2π-periodic function, a and bare positive constants, and the pertur...In this paper, we are concerned with the boundedness of all the solutions ofthe equation x' + ax^+ - bx^- + φ(x) = p(t), where p(t) is a smooth 2π-periodic function, a and bare positive constants, and the perturbation φ(x) is bounded.展开更多
The existence of invariant tori and quasi-periodic solutions for asymptotically linear impact oscillators is proved by using the successor map and some generalized versions of the Moser's twist theorem.
In this paper, we apply Aubry-Mather theory developed in recent years about monotone twist mappings to the study of the superlinear Duffing equation+g(x)=p(t), (0)where p(t)∈C^0(R) is periodic with period 1 and g(x) ...In this paper, we apply Aubry-Mather theory developed in recent years about monotone twist mappings to the study of the superlinear Duffing equation+g(x)=p(t), (0)where p(t)∈C^0(R) is periodic with period 1 and g(x) satisfies the superlinearity condition Consequently, this gives descriptions of the global dynamical behavior, particularly periodic solutions and quasi-periodic solutions of a wide class of Eq. (0), not requiring high order smoothness assumption.展开更多
For the two main recurrence behaviors of segment-rupturing earthquakes on active faults of the Chinese mainland,this paper establishes corresponding empirical distributions forearthquake recurrence interval. The resul...For the two main recurrence behaviors of segment-rupturing earthquakes on active faults of the Chinese mainland,this paper establishes corresponding empirical distributions forearthquake recurrence interval. The results show that, for the time-predictable recurrence, the normalized recurrence interval, T/Tt, obeys very well the lognormal distributions: LN (μ1=0.00, σ21 =0. 152), where, T is an observed recurrence interval, and Tt is the average recurrence interval that is correlative with the size of the preceding event. For the quasi-periodic recurrence, the normalized recurrence interval, T/T, follows the lognormal distribution : LN(μq=0.00, σ2q=0.242), where, T is the median of recurrence intervals for various cycles. A statistical test suggests that, there is no significant difference between the latter distribution, built by this paper, and the recurrence interval distribution for the characteristic earthquakes of the Circum-Pacific Plate boundaries (NB model). Accordingly, this paper combines these two distributions into one and obtains a more stable lognormal distribution :LN (μ = 0.00, σ2 = 0.222), for the quasi-periodic recurrence interval.展开更多
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates...The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.展开更多
In this paper,we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrodinger equations with different large forcing terms and(2p+1)-nonlinearities iu_(t)-Δu+φ_(1)(ω_(1)+t)u+...In this paper,we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrodinger equations with different large forcing terms and(2p+1)-nonlinearities iu_(t)-Δu+φ_(1)(ω_(1)+t)u+φ_(2)(ω_(2)+t)|u|^(2p)u=0,t∈R,x∈T^(2) under periodic boundary conditions. As a result, the existence of a Whitneysmooth family of small-amplitude reducible quasi-periodic solutions is obtained.展开更多
In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric ...In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).展开更多
Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynam...Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.展开更多
The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and resea...The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation.展开更多
Libration-point missions have been very useful and successful. Due to the unstable natures of most of these orbits, the long-time stationkeeping demands frequent maneuvers and precise orbit determinations. Earth-based...Libration-point missions have been very useful and successful. Due to the unstable natures of most of these orbits, the long-time stationkeeping demands frequent maneuvers and precise orbit determinations. Earth-based tracking will have to undertake much more responsibilities with the increasing number of libration missions. An autonomous navigation system could offer a better way to decrease the need for Earth-based tracking. Nevertheless, when an autonomous navigation system is applied, there are three important factors affecting autonomous navigation accuracy, i.e., the accuracy of initial conditions, the accuracy of measurements, and the accuracy of onboard dynamics for propagation. This paper focuses on analyzing the influence from the third factor and finding an appropriate navigation dynamics, which can satisfy the requirement of estimation accuracy but not cause too much burden for onboard computation. When considering the restricted three-body model and the bicircular restricted four-body model as navigation dynamics, the astrin- gency is not shown during the simulations. Meanwhile, when considering the influences of the Sun's direct and indirect perturbations and the eccentricity of the Moon's orbit, a new navigation dynamic model with the standard ephemerides is proposed. The simulation shows the feasibility of the proposed model.展开更多
In this article,we prove the existence of quasi-periodic solutions and the boundedness of all solutions of the p-Laplacian equation(φ_(p)(x’))’+aφ_(p)(x+)-bφ_(p)(x-)=g(x,t)+f(t),where g(x,t)and f(t)are quasi-peri...In this article,we prove the existence of quasi-periodic solutions and the boundedness of all solutions of the p-Laplacian equation(φ_(p)(x’))’+aφ_(p)(x+)-bφ_(p)(x-)=g(x,t)+f(t),where g(x,t)and f(t)are quasi-periodic in t with Diophantine frequency.A new method is presented to obtain the generating function to construct canonical transformation by solving a quasi-periodic homological equation.展开更多
文摘The quasi-periodic perturbation for the Duffing's equation with two external forcing terms has been discussed. The second order averaging method and sub-harmonic Melnikov's method through the medium of the averaging mrthod have been applied to detect the existence of quasiperiodic solutions and sub-harmonic bifurcation for the system. Sub-harmonic bifurcation curves are given by using numerical computation for sub-harmonic Melnikov's function.
基金The Special Funds for Major State Basic Research Projects (G1999032802) in China the NNSF (10076006) of China.
文摘In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.
文摘In this paper, we are concerned with the boundedness of all the solutions ofthe equation x' + ax^+ - bx^- + φ(x) = p(t), where p(t) is a smooth 2π-periodic function, a and bare positive constants, and the perturbation φ(x) is bounded.
文摘The existence of invariant tori and quasi-periodic solutions for asymptotically linear impact oscillators is proved by using the successor map and some generalized versions of the Moser's twist theorem.
文摘In this paper, we apply Aubry-Mather theory developed in recent years about monotone twist mappings to the study of the superlinear Duffing equation+g(x)=p(t), (0)where p(t)∈C^0(R) is periodic with period 1 and g(x) satisfies the superlinearity condition Consequently, this gives descriptions of the global dynamical behavior, particularly periodic solutions and quasi-periodic solutions of a wide class of Eq. (0), not requiring high order smoothness assumption.
文摘For the two main recurrence behaviors of segment-rupturing earthquakes on active faults of the Chinese mainland,this paper establishes corresponding empirical distributions forearthquake recurrence interval. The results show that, for the time-predictable recurrence, the normalized recurrence interval, T/Tt, obeys very well the lognormal distributions: LN (μ1=0.00, σ21 =0. 152), where, T is an observed recurrence interval, and Tt is the average recurrence interval that is correlative with the size of the preceding event. For the quasi-periodic recurrence, the normalized recurrence interval, T/T, follows the lognormal distribution : LN(μq=0.00, σ2q=0.242), where, T is the median of recurrence intervals for various cycles. A statistical test suggests that, there is no significant difference between the latter distribution, built by this paper, and the recurrence interval distribution for the characteristic earthquakes of the Circum-Pacific Plate boundaries (NB model). Accordingly, this paper combines these two distributions into one and obtains a more stable lognormal distribution :LN (μ = 0.00, σ2 = 0.222), for the quasi-periodic recurrence interval.
基金Project supported by the National Natural Science Foundation of China(Nos.11402127,11290152 and 11072008)
文摘The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.
文摘In this paper,we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrodinger equations with different large forcing terms and(2p+1)-nonlinearities iu_(t)-Δu+φ_(1)(ω_(1)+t)u+φ_(2)(ω_(2)+t)|u|^(2p)u=0,t∈R,x∈T^(2) under periodic boundary conditions. As a result, the existence of a Whitneysmooth family of small-amplitude reducible quasi-periodic solutions is obtained.
基金supported by National Natural Science Foundation of China(Grant No.12271380)supported by National Natural Science Foundation of China(Grant Nos.12171010 and 12288101)National Key R&D Program(Grant No.2021YFA1001600)。
文摘In this paper,we establish quantitative Green’s function estimates for some higher-dimensional lattice quasi-periodic(QP)Schrodinger operators.The resonances in the estimates can be described via a pair of symmetric zeros of certain functions,and the estimates apply to the sub-exponential-type non-resonance conditions.As the application of quantitative Green’s function estimates,we prove both the arithmetic version of Anderson localization and the finite volume version of(1/2-)-Holder continuity of the integrated density of states(IDS)for such QP Schrodinger operators.This gives an affirmative answer to Bourgain’s problem in Bourgain(2000).
基金the National Natural Science Foundation of China(Nos.10772104 and10402018)the Shanghai Leading Academic Discipline Project(No.Y0103)
文摘Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.
基金supported by the National Natural Science Foundation of China(52171288,51890914)the Key Research and Development Program of Shandong Province(Major Innovation Project)(2022CXGC020405)+3 种基金the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Oil and Gas Production System-Subject 4“Research on Subsea Christmas Tree and Wellhead Offshore Testing Technology”[MC-201901-S01-04]the Fundamental Research Funds for the Central Universities(20CX02410A)the Development Fund of Shandong Key Laboratory of Oil&Gas Storage and Transportation SafetyCNPq,CAPES and FAPERJ of Brazil。
文摘The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG)pipes conveying pulsating internal flow are very complex.And the dynamic behavior will induce the failure of the pipes,and research of vibration and stability of pipes becomes a major concern.Considering that the elastic modulus,density,and coefficient of viscoelastic damping of the pipe material vary along the axial direction,the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory.The generalized integral transform technique(GITT)is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time.The time domain diagram,phase portraits,Poincarémap and power spectra diagram at different dimensionless pulsation frequencies,are discussed in detail,showing the characteristics of chaotic,periodic,and quasi-periodic motion.The results show that the distributions of the elastic modulus,density,and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes.With the increase of the material property coefficient k,the transition between chaotic,periodic,and quasi-periodic motion occurs,especially in the high-frequency region of the flow pulsation.
基金was supported by the National Natural Science Foundation of China(No.61021002).
文摘Libration-point missions have been very useful and successful. Due to the unstable natures of most of these orbits, the long-time stationkeeping demands frequent maneuvers and precise orbit determinations. Earth-based tracking will have to undertake much more responsibilities with the increasing number of libration missions. An autonomous navigation system could offer a better way to decrease the need for Earth-based tracking. Nevertheless, when an autonomous navigation system is applied, there are three important factors affecting autonomous navigation accuracy, i.e., the accuracy of initial conditions, the accuracy of measurements, and the accuracy of onboard dynamics for propagation. This paper focuses on analyzing the influence from the third factor and finding an appropriate navigation dynamics, which can satisfy the requirement of estimation accuracy but not cause too much burden for onboard computation. When considering the restricted three-body model and the bicircular restricted four-body model as navigation dynamics, the astrin- gency is not shown during the simulations. Meanwhile, when considering the influences of the Sun's direct and indirect perturbations and the eccentricity of the Moon's orbit, a new navigation dynamic model with the standard ephemerides is proposed. The simulation shows the feasibility of the proposed model.
基金Supported by National Natural Science Foundation of China(Grant Nos.11801295,11971059,12101623)China Postdoctoral Science Foundation(Grant No.2020M680132)Guangdong Basic and Applied Basic Research Foundation(Grant No.2020A1515110382)。
文摘In this article,we prove the existence of quasi-periodic solutions and the boundedness of all solutions of the p-Laplacian equation(φ_(p)(x’))’+aφ_(p)(x+)-bφ_(p)(x-)=g(x,t)+f(t),where g(x,t)and f(t)are quasi-periodic in t with Diophantine frequency.A new method is presented to obtain the generating function to construct canonical transformation by solving a quasi-periodic homological equation.