Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the resul...Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.展开更多
An accurate determination of lightning protection zone is an important issue in the analysis and design of an appropri-ate lightning protection system. This paper presents a fast and accurate protection zone determina...An accurate determination of lightning protection zone is an important issue in the analysis and design of an appropri-ate lightning protection system. This paper presents a fast and accurate protection zone determination methodology for metallic lightning rod. The methodology is based on Quasi Monte Carlo Integration technique applied to Method of Moments (MoM) solution of Integral Equations. As an example, solution of the integral equation for unknown charge distribution on lightning rod is obtained. The electric field in the region surrounding the rod is then computed and the protection zone plotted accordingly. The effect of the thickness of the rod on the protection zone is also studied.展开更多
In the present note the convergence problem of the sequential number-theoretic method for optimization proposed by Fang and Wang is studied, the convergence criteria and the estimation of errors concerning this algori...In the present note the convergence problem of the sequential number-theoretic method for optimization proposed by Fang and Wang is studied, the convergence criteria and the estimation of errors concerning this algorithm are given.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010479)+2 种基金Innovation Research of Nanjing Institute of Technology, China (Grant No. CKJ20100008)Jiangsu Provincial Foundation of 333 Talents Engineering of ChinaJiangsu Provincial Foundation of Six Talented Peak of China
文摘Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.
文摘An accurate determination of lightning protection zone is an important issue in the analysis and design of an appropri-ate lightning protection system. This paper presents a fast and accurate protection zone determination methodology for metallic lightning rod. The methodology is based on Quasi Monte Carlo Integration technique applied to Method of Moments (MoM) solution of Integral Equations. As an example, solution of the integral equation for unknown charge distribution on lightning rod is obtained. The electric field in the region surrounding the rod is then computed and the protection zone plotted accordingly. The effect of the thickness of the rod on the protection zone is also studied.
基金the National Natural Science Foundation of China (No.19871083)
文摘In the present note the convergence problem of the sequential number-theoretic method for optimization proposed by Fang and Wang is studied, the convergence criteria and the estimation of errors concerning this algorithm are given.