In this study, we consider the one-dimensional bipolar quantum drift-diffusion model, which consists of the coupled nonlinear fourth-order parabolic equation and the electric field equation. We first show the global e...In this study, we consider the one-dimensional bipolar quantum drift-diffusion model, which consists of the coupled nonlinear fourth-order parabolic equation and the electric field equation. We first show the global existence of the strong solution of the initial boundary value problem in the quarter plane. Moreover, we show the self-similarity property of the strong solution of the bipolar quantum drift-diffusion model in the large time. Namely, we show the unique global strong solution with strictly positive density to the initial boundary value problem of the quantum drift-diffusion model, which in large time, tends to have a self-similar wave at an algebraic time-decay rate. We prove them in an energy method.展开更多
In this paper, we investigate a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices. We mainly show the long-time behavior of solutions to the one-dimensional bipolar quantum drift-diffusi...In this paper, we investigate a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices. We mainly show the long-time behavior of solutions to the one-dimensional bipolar quantum drift-diffusion model in a bounded domain. That is, we prove the existence of the global attractor for the solution.展开更多
基金Supported by the National Natural Science Foundation of China(11671134)
文摘In this study, we consider the one-dimensional bipolar quantum drift-diffusion model, which consists of the coupled nonlinear fourth-order parabolic equation and the electric field equation. We first show the global existence of the strong solution of the initial boundary value problem in the quarter plane. Moreover, we show the self-similarity property of the strong solution of the bipolar quantum drift-diffusion model in the large time. Namely, we show the unique global strong solution with strictly positive density to the initial boundary value problem of the quantum drift-diffusion model, which in large time, tends to have a self-similar wave at an algebraic time-decay rate. We prove them in an energy method.
基金Supported by the Vital Science Research Foundation of Henan Province Education Department(No.12A110024)the Youth Natural Science Foundation of Zhengzhou Institute of Aeronautical Industry Management(No.2013111001,No.2014113002)+2 种基金the Natural Science Foundation of Henan Province Science and Technology Department(No.132300410373)the Aeronautical Science Foundation of China(No.2013ZD55006)the Project of Youth Backbone Teachers of Colleges and Universities in Henan Province(No.2013GGJS-142)
基金Supported by the Vital Science Research Foundation of Henan Province Education Department(12A110024)the Youth Natural Science Foundation of Zhengzhou Institute of Aeronautical Industry Management(2013111001)the Natural Science Foundation of Henan Province Science and Technology Department(132300410373)
基金Supported by the National Natural Science Foundation of China(11671134)
文摘In this paper, we investigate a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices. We mainly show the long-time behavior of solutions to the one-dimensional bipolar quantum drift-diffusion model in a bounded domain. That is, we prove the existence of the global attractor for the solution.