The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d...The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.展开更多
We propose a unified scheme to implement the optimal 1→ 3economical phase-covariant quantum cloning and optimal 1→3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavit...We propose a unified scheme to implement the optimal 1→ 3economical phase-covariant quantum cloning and optimal 1→3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity.During this process,no transfer of quantum information between the SQUIDs and cavity is required.The cavity field is only virtually excited.The scheme is insensitive to cavity decay.Therefore,the scheme can be experimentally realized in the range of current cavity QED techniques.展开更多
A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed.By modulating the parameters of the system,the optimal 1 → 2 universal quantum cloning machine,1 → 2 phase-covarian...A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed.By modulating the parameters of the system,the optimal 1 → 2 universal quantum cloning machine,1 → 2 phase-covariant cloning machine,and 1 → 3 economical phase-covariant cloning machine are constructed.The present scheme,which is attainable with current technology,saves two qubits compared with previous cloning machines.展开更多
In this paper, we derive the explicit transformations of the optimal 1→3, 4, 5 phase-covariant cloning in three dimensions, and then generalize them to the cases of 1 → M = 3n, 3n + 1, 3n + 2 (n ≥ 1 integer) cl...In this paper, we derive the explicit transformations of the optimal 1→3, 4, 5 phase-covariant cloning in three dimensions, and then generalize them to the cases of 1 → M = 3n, 3n + 1, 3n + 2 (n ≥ 1 integer) cloning. The clone fidelities are coincident with the theoretical bounds found.展开更多
Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superre...Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N2, and iii) a protocol that generates O(N2) nearly perfect copies of a generic pure state U|0) while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M2/N2.展开更多
This paper presents a very simple method to derive the explicit transformations of the optimal economical 1 to M phase-covariant cloning. The fidelity of clones reaches the theoretic bound [D'Ar]ano G M and Macchiave...This paper presents a very simple method to derive the explicit transformations of the optimal economical 1 to M phase-covariant cloning. The fidelity of clones reaches the theoretic bound [D'Ar]ano G M and Macchiavello C 2003 Phys. Rev. A 67 042306]. The derived transformations cover the previous contributions [Delgado Y, Lamata Let al, 2007 Phys. Rev. Lett. 98 150502] in which M must be odd.展开更多
This paper presents a quantum network to implement the optimal 1→2 quantum cloning in 2 dimensions, including the optimal asymmetric universal, the optimal symmetric phase-covariant, and the asymmetric real state clo...This paper presents a quantum network to implement the optimal 1→2 quantum cloning in 2 dimensions, including the optimal asymmetric universal, the optimal symmetric phase-covariant, and the asymmetric real state cloning. By only choosing different angles of the single-qubit rotations, the quantum network can implement three optimal quantum cloning.展开更多
Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubi...Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.展开更多
This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. ...This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.展开更多
Establishing entanglement is an essential task of quantum communication technology.Beyond entanglement,quantum discord,as a measure of quantum correlation,is a necessary prerequisite to the success of entanglement dis...Establishing entanglement is an essential task of quantum communication technology.Beyond entanglement,quantum discord,as a measure of quantum correlation,is a necessary prerequisite to the success of entanglement distribution.To realize efficient quantum communication based on quantum discord,in this paper,we consider the practical advantages of continuous variables and propose a feasible continuous-variable quantum network coding scheme based on quantum discord.By means of entanglement distribution by separable states,it can achieve quantum entanglement distribution from sources to targets in a butterfly network.Compared with the representative discrete-variable quantum network coding schemes,the proposed continuous-variable quantum network coding scheme has a higher probability of entanglement distribution and defends against eavesdropping and forgery attacks.Particularly,the deduced relationship indicates that the increase in entanglement is less than or equal to quantum discord.展开更多
Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistie cloning based on the first network is realized and the cloning probability of success based ...Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistie cloning based on the first network is realized and the cloning probability of success based on the second network is lOOe/0. Therefore, the second network is more motivative than the first one.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10704001)the Natural Science Foundation of the Education Department of Anhui Province of China (Grant Nos.KJ2010ZD08 and KJ2010B204)the Doctor Research Start-Up Program of Huainan Normal University
文摘The explicit transformations of the 1→ 3 optimal universal quantum cloning and the optimal phase-covariant quantum cloning in d-dimensions are presented, and the dimensionalities of their ancillary systems are both d-dimensions. As d→∞ , their clone fidelities move toward 1/3, showing a classical limit for the fidelity of quantum cloning. Based on the reduction of the unitary transformation of quantum cloning, the transformation of the 1→M=d+1 optimal economical phase-covariant quantum cloning in d-dimensions is derived, and the clone fidelity is covered by the theoretical value.
基金supported by the National Natural Science Foundation of China (Grant No.10674001)the Program of the Education Department of Anhui Province (Grant No.KJ2007A002)
文摘We propose a unified scheme to implement the optimal 1→ 3economical phase-covariant quantum cloning and optimal 1→3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity.During this process,no transfer of quantum information between the SQUIDs and cavity is required.The cavity field is only virtually excited.The scheme is insensitive to cavity decay.Therefore,the scheme can be experimentally realized in the range of current cavity QED techniques.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11165015)the Nature Science Foundation of Jilin Province,China (Grant No. 201115226)
文摘A scheme for implementing nonlocal quantum cloning via quantum dots trapped in cavities is proposed.By modulating the parameters of the system,the optimal 1 → 2 universal quantum cloning machine,1 → 2 phase-covariant cloning machine,and 1 → 3 economical phase-covariant cloning machine are constructed.The present scheme,which is attainable with current technology,saves two qubits compared with previous cloning machines.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074002,61073048,and 11104057)the Natural Science Foundationof the Education Department of Anhui Province,China(Grant Nos.KJ2010ZD08 and KJ2012A245)the Postgraduate Program of Huainan NormalUniversity of China
文摘In this paper, we derive the explicit transformations of the optimal 1→3, 4, 5 phase-covariant cloning in three dimensions, and then generalize them to the cases of 1 → M = 3n, 3n + 1, 3n + 2 (n ≥ 1 integer) cloning. The clone fidelities are coincident with the theoretical bounds found.
文摘Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N2, and iii) a protocol that generates O(N2) nearly perfect copies of a generic pure state U|0) while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M2/N2.
基金supported by the National Natural Science Foundation of China (Grant No 10674001)the Program of the Education Department of Anhui Province of China (Grant No KJ2007A002)
文摘This paper presents a very simple method to derive the explicit transformations of the optimal economical 1 to M phase-covariant cloning. The fidelity of clones reaches the theoretic bound [D'Ar]ano G M and Macchiavello C 2003 Phys. Rev. A 67 042306]. The derived transformations cover the previous contributions [Delgado Y, Lamata Let al, 2007 Phys. Rev. Lett. 98 150502] in which M must be odd.
基金supported by the National Natural Science Foundation of China (Grant No 10674001)also by the Program of the Education Department of Anhui Province (Grant No KJ2007A002)
文摘This paper presents a quantum network to implement the optimal 1→2 quantum cloning in 2 dimensions, including the optimal asymmetric universal, the optimal symmetric phase-covariant, and the asymmetric real state cloning. By only choosing different angles of the single-qubit rotations, the quantum network can implement three optimal quantum cloning.
基金The project supported by National Natural Science Foundation of China under Grant No. 10304022, the Science-Technology Fund of Anhui Province for 0utstanding Youth under Grant No. 06042087, the Key Fund of the Ministry of Education of China under Grant No. 206063, Natural Science Foundation of Hubei Province of China under Grant No, 2006ABA354
文摘Based on A.K. Pati's original idea [Phys. Rev. A 61 (2000) 022308] on single-qubit-state-assisted clone, very recently Zhan has proposed two assisted quantum cloning protocols of a special class of unknown two-qubit entangled states [Phys. Lett. A 336 (2005) 317]. In this paper we further generalize Zhan's protocols such that an arbitrary unknown two-qubit entangled state can be treated.
文摘This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.
基金This project is supported by the National Natural Science Foundation of China(No.61571024,No.61971021)Aeronautical Science Foundation of China(No.2018ZC51016)the National Key Research and Development Program of China(No.2016YFC1000307)for valuable helps.
文摘Establishing entanglement is an essential task of quantum communication technology.Beyond entanglement,quantum discord,as a measure of quantum correlation,is a necessary prerequisite to the success of entanglement distribution.To realize efficient quantum communication based on quantum discord,in this paper,we consider the practical advantages of continuous variables and propose a feasible continuous-variable quantum network coding scheme based on quantum discord.By means of entanglement distribution by separable states,it can achieve quantum entanglement distribution from sources to targets in a butterfly network.Compared with the representative discrete-variable quantum network coding schemes,the proposed continuous-variable quantum network coding scheme has a higher probability of entanglement distribution and defends against eavesdropping and forgery attacks.Particularly,the deduced relationship indicates that the increase in entanglement is less than or equal to quantum discord.
文摘Two quantum logic networks are proposed to simulate a cloning machine that copies the states near a given one. Probabilistie cloning based on the first network is realized and the cloning probability of success based on the second network is lOOe/0. Therefore, the second network is more motivative than the first one.