Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have be...Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation(QPE).The recent progress in dual-pol radar research and applications in China is summarized in four aspects.Firstly,the characteristics of several representative dual-pol radars are reviewed.Various approaches have been developed for radar data quality control,including calibration,attenuation correction,calculation of specific differential phase shift,and identification and removal of non-meteorological echoes.Using dual-pol radar measurements,the microphysical characteristics derived from raindrop size distribution retrieval,hydrometeor classification,and QPE is better understood in China.The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized.The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.展开更多
基金primarily supported by the National Key Research and Development Program of China(Grant Nos.2017YFC1501703 and 2018YFC1506404)the National Natural Science Foundation of China(Grant Nos.41875053,41475015 and 41322032)+2 种基金the National Fundamental Research 973 Program of China(Grant Nos.2013CB430101 and2015CB452800)the Open Research Program of the State Key Laboratory of Severe Weatherthe Key Research Development Program of Jiangsu Science and Technology Department(Social Development Program,No.BE2016732)
文摘Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation(QPE).The recent progress in dual-pol radar research and applications in China is summarized in four aspects.Firstly,the characteristics of several representative dual-pol radars are reviewed.Various approaches have been developed for radar data quality control,including calibration,attenuation correction,calculation of specific differential phase shift,and identification and removal of non-meteorological echoes.Using dual-pol radar measurements,the microphysical characteristics derived from raindrop size distribution retrieval,hydrometeor classification,and QPE is better understood in China.The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized.The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.
文摘为了降低因Z-R关系不确定导致的雷达定量降水估测(Quantitative Precipitation Estimation,简称QPE)误差,提出了基于云团的分组Z-R关系拟合方案,在风暴单体识别算法得到的不同降水云团或同一个云团内部的不同数据分组区域内,拟合并采用不同的Z-R关系反演地面降水信息。以2013年6月5—7日的梅雨锋过程为例,使用覆盖长江中下游地区的28部多普勒雷达和全国逐分钟雨量计的观测资料,对单一动态关系、简单分组Z-R关系以及基于云团的分组ZR关系反演的雷达1 h QPE进行效果对比和误差分析,结果表明:(1)基于云团的分组Z-R关系可以有效识别降水云系的局部特征,这是基于云团的分组Z-R关系优于其他两种Z-R关系方案的重要原因。(2)雷达波束部分遮挡导致的偏弱反射率因子,对雷达QPE数据场的不连续性和Z-R关系的不确定性均有影响。(3)雷达硬件或雷达标定引入的偏强(弱)的反射率因子,与简单分组Z-R关系得到的雷达QPE局部高(低)估相关,这降低了简单分组Z-R关系在大范围降水过程中的适用性,但对基于云团的分组Z-R关系的影响较小。