近10余年来,我国政府重视食品安全并逐渐加强风险分析体系的构建和实施。根据历年来国家卫生与计生委的统计数据,表明由致病微生物导致的食物中毒发病率一直高于其他危害。食源性致病菌引起的食品安全风险是全球性问题,发展中国家面临...近10余年来,我国政府重视食品安全并逐渐加强风险分析体系的构建和实施。根据历年来国家卫生与计生委的统计数据,表明由致病微生物导致的食物中毒发病率一直高于其他危害。食源性致病菌引起的食品安全风险是全球性问题,发展中国家面临的情况更为严峻,因此加强我国微生物定量风险评估以减少与发达国家的差距,从国家层面上势在必行。特别是2009年我国颁布实施《食品安全法》和2011年成立国家食品安全风险评估中心(China National Center for Food Safety Risk Assessment,CFSA)以来,已有不少针对国内具体食品致病菌情况开展的食品微生物定量风险评估(quantitative microbial risk assessment,QMRA)研究。本文对2000年至今我国已开展的QMRA研究,包括涉及的食品、致病菌、微生物预测模型、剂量-效应模型等进行详细综述。同时指出我国开展QMRA面临的技术性难题及解决方法,并对采用QMRA结果用于构建危害分析与关键控制点(Hazard Analysis and Critical Control Point,HACCP)和食品安全目标(food safety objective,FSO)以及执行目标(performance objective,PO)的应用前景进行探讨。建议加强风险评估与风险管理的互动交流、进一步完善风险监测、微生物限量制定和国际合作,在完善实施指南的基础上针对我国具体国情开展更多具有科学性和系统性的QMRA研究。展开更多
The microbial quality of urban recreational water is of great concern to public health.The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify mic...The microbial quality of urban recreational water is of great concern to public health.The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks.To assess the levels of bacterial pathogens and health risks in urban recreational water,we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year.The pathogen diversity revealed by 16 S r RNA gene targeted next-generation sequencing(NGS) showed that 16 of 40 genera and 13 of 76 reference species were present.The most abundant species were Acinetobacter johnsonii,Mycobacterium avium and Aeromonas spp.Quantitative polymerase chain reaction(q PCR) of Escherichia coli(uid A),Aeromonas(aer A),M.avium(16S r RNA),Pseudomonas aeruginosa(oaa) and Salmonella(inv A) showed that the aer A genes were the most abundant,occurring in all samples with concentrations of 10^(4–6) genome copies/100 m L,followed by oaa,inv A and M.avium.In total,34.8% of the samples harbored all genes,indicating the prevalence of these pathogens in this recreational waterbody.Based on the q PCR results,a quantitative microbial risk assessment(QMRA) showed that the annual infection risks of Salmonella,M.avium and P.aeruginosa in five activities were mostly greater than the U.S.EPA risk limit for recreational contacts,and children playing with water may be exposed to the greatest infection risk.Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and q PCR.展开更多
文摘近10余年来,我国政府重视食品安全并逐渐加强风险分析体系的构建和实施。根据历年来国家卫生与计生委的统计数据,表明由致病微生物导致的食物中毒发病率一直高于其他危害。食源性致病菌引起的食品安全风险是全球性问题,发展中国家面临的情况更为严峻,因此加强我国微生物定量风险评估以减少与发达国家的差距,从国家层面上势在必行。特别是2009年我国颁布实施《食品安全法》和2011年成立国家食品安全风险评估中心(China National Center for Food Safety Risk Assessment,CFSA)以来,已有不少针对国内具体食品致病菌情况开展的食品微生物定量风险评估(quantitative microbial risk assessment,QMRA)研究。本文对2000年至今我国已开展的QMRA研究,包括涉及的食品、致病菌、微生物预测模型、剂量-效应模型等进行详细综述。同时指出我国开展QMRA面临的技术性难题及解决方法,并对采用QMRA结果用于构建危害分析与关键控制点(Hazard Analysis and Critical Control Point,HACCP)和食品安全目标(food safety objective,FSO)以及执行目标(performance objective,PO)的应用前景进行探讨。建议加强风险评估与风险管理的互动交流、进一步完善风险监测、微生物限量制定和国际合作,在完善实施指南的基础上针对我国具体国情开展更多具有科学性和系统性的QMRA研究。
基金supported by the Key Program of the National Natural Science Foundation of China(No.51138006)the National Key Research on Water Environment Pollution Control in China(No.2012ZX07301-001)
文摘The microbial quality of urban recreational water is of great concern to public health.The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks.To assess the levels of bacterial pathogens and health risks in urban recreational water,we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year.The pathogen diversity revealed by 16 S r RNA gene targeted next-generation sequencing(NGS) showed that 16 of 40 genera and 13 of 76 reference species were present.The most abundant species were Acinetobacter johnsonii,Mycobacterium avium and Aeromonas spp.Quantitative polymerase chain reaction(q PCR) of Escherichia coli(uid A),Aeromonas(aer A),M.avium(16S r RNA),Pseudomonas aeruginosa(oaa) and Salmonella(inv A) showed that the aer A genes were the most abundant,occurring in all samples with concentrations of 10^(4–6) genome copies/100 m L,followed by oaa,inv A and M.avium.In total,34.8% of the samples harbored all genes,indicating the prevalence of these pathogens in this recreational waterbody.Based on the q PCR results,a quantitative microbial risk assessment(QMRA) showed that the annual infection risks of Salmonella,M.avium and P.aeruginosa in five activities were mostly greater than the U.S.EPA risk limit for recreational contacts,and children playing with water may be exposed to the greatest infection risk.Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and q PCR.