This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are syst...This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.展开更多
European Community policy concerning water is placing increasing demands on the acquisition of information about the quality of aquatic environments. The cost of this information has led to a reflection on the rationa...European Community policy concerning water is placing increasing demands on the acquisition of information about the quality of aquatic environments. The cost of this information has led to a reflection on the rationalization of monitoring networks and, therefore, on the economic value of information produced by these networks. The aim of this article is to contribute to this reflection. To do so, we used the Bayesian framework to define the value of additional information in relation to the following three parameters: initial assumptions (prior probabilities) on the states of nature, costs linked to a poor decision (error costs) and accuracy of additional information. We then analyzed the impact of these parameters on this value, particularly the combined role of prior probabilities and error costs that increased or decreased the value of information depending on the initial uncertainty level. We then illustrated the results using a case study of a stream in the Bas-Rhin department in France.展开更多
文摘This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.
文摘European Community policy concerning water is placing increasing demands on the acquisition of information about the quality of aquatic environments. The cost of this information has led to a reflection on the rationalization of monitoring networks and, therefore, on the economic value of information produced by these networks. The aim of this article is to contribute to this reflection. To do so, we used the Bayesian framework to define the value of additional information in relation to the following three parameters: initial assumptions (prior probabilities) on the states of nature, costs linked to a poor decision (error costs) and accuracy of additional information. We then analyzed the impact of these parameters on this value, particularly the combined role of prior probabilities and error costs that increased or decreased the value of information depending on the initial uncertainty level. We then illustrated the results using a case study of a stream in the Bas-Rhin department in France.