考虑成功树分析(Success tree analysis,STA)所蕴含的事件成功的逻辑关系不够简洁,提出一类通用直观的拓展型成功树分析(Extended success tree analysis,ESTA),并基于ESTA逻辑设计质量屋(House of quality,HoQ)构建方法,进而搭建大型...考虑成功树分析(Success tree analysis,STA)所蕴含的事件成功的逻辑关系不够简洁,提出一类通用直观的拓展型成功树分析(Extended success tree analysis,ESTA),并基于ESTA逻辑设计质量屋(House of quality,HoQ)构建方法,进而搭建大型复杂产品总体参数设计拓展型成功树-质量屋(Extended success tree analysis-house of quality,ESTA-HoQ)网络框架;考虑产品设计面向质量,定义一类标准质量损失函数,并揭示大型复杂产品多主体协同设计的本质就是合作利益分配,在此基础上,以标准质量损失最小化为目标,根据不同逻辑门设计目标函数,并以设计参数自身约束、参数间关系约束以及多主体利益约束作为约束条件,构建基于ESTA-HoQ网络的大型复杂产品总体参数多主体协同设计多级递阶规划模型,并设计模型的求解算法;以固定翼飞机设计为例,详细阐述该思路和模型的可行性和有效性。展开更多
针对多响应的质量设计问题,本文结合似不相关回归(seemingly unrelated regression,SU R)模型与因子效应原则提出了一种新的建模与优化方法.该方法不仅结合S U R模型与因子效应原则筛选出各响应模型的显著性变量,而且运用多变量过程能...针对多响应的质量设计问题,本文结合似不相关回归(seemingly unrelated regression,SU R)模型与因子效应原则提出了一种新的建模与优化方法.该方法不仅结合S U R模型与因子效应原则筛选出各响应模型的显著性变量,而且运用多变量过程能力指数衡量了过程能力满足规格要求程度的水平.此外,该方法还通过贝叶斯抽样技术考虑了模型参数不确定性和预测响应值波动对优化结果的影响.首先,在S U R模型中针对每个变量设置了一个二元变量指示器以考虑因子效应原则,通过所构建的混合二元变量指示器修正了过程响应和试验因子之间的函数关系;其次,通过计算混合二元变量指示器和模型结构的后验概率以识别显著性变量,从而确定最佳的模型结构;然后,在此基础上结合贝叶斯抽样技术构建了一种新的多变量过程能力指数,并通过最大化所构建的多变量过程能力指数获得了最佳的参数设计值;最后,实际案例研究表明:本文所提方法不仅能够有效地筛选出多响应过程的显著性变量,而且能够获得最佳的参数设计值.展开更多
文摘考虑成功树分析(Success tree analysis,STA)所蕴含的事件成功的逻辑关系不够简洁,提出一类通用直观的拓展型成功树分析(Extended success tree analysis,ESTA),并基于ESTA逻辑设计质量屋(House of quality,HoQ)构建方法,进而搭建大型复杂产品总体参数设计拓展型成功树-质量屋(Extended success tree analysis-house of quality,ESTA-HoQ)网络框架;考虑产品设计面向质量,定义一类标准质量损失函数,并揭示大型复杂产品多主体协同设计的本质就是合作利益分配,在此基础上,以标准质量损失最小化为目标,根据不同逻辑门设计目标函数,并以设计参数自身约束、参数间关系约束以及多主体利益约束作为约束条件,构建基于ESTA-HoQ网络的大型复杂产品总体参数多主体协同设计多级递阶规划模型,并设计模型的求解算法;以固定翼飞机设计为例,详细阐述该思路和模型的可行性和有效性。
文摘针对多响应的质量设计问题,本文结合似不相关回归(seemingly unrelated regression,SU R)模型与因子效应原则提出了一种新的建模与优化方法.该方法不仅结合S U R模型与因子效应原则筛选出各响应模型的显著性变量,而且运用多变量过程能力指数衡量了过程能力满足规格要求程度的水平.此外,该方法还通过贝叶斯抽样技术考虑了模型参数不确定性和预测响应值波动对优化结果的影响.首先,在S U R模型中针对每个变量设置了一个二元变量指示器以考虑因子效应原则,通过所构建的混合二元变量指示器修正了过程响应和试验因子之间的函数关系;其次,通过计算混合二元变量指示器和模型结构的后验概率以识别显著性变量,从而确定最佳的模型结构;然后,在此基础上结合贝叶斯抽样技术构建了一种新的多变量过程能力指数,并通过最大化所构建的多变量过程能力指数获得了最佳的参数设计值;最后,实际案例研究表明:本文所提方法不仅能够有效地筛选出多响应过程的显著性变量,而且能够获得最佳的参数设计值.