The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a sw...The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.展开更多
A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach.We provide a rigorous error analysis for the proposed methods,which shows that t...A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach.We provide a rigorous error analysis for the proposed methods,which shows that the numerical errors decay exponentially in the L∞-norm and L2-norm.Numerical examples illustrate the convergence and effectiveness of the numerical methods.展开更多
In this paper, we examine the space discretization of time fractional telegraph equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease and convenience, we deal with the fractional derivative by first ...In this paper, we examine the space discretization of time fractional telegraph equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease and convenience, we deal with the fractional derivative by first converting from Caputo’s type to Riemann-Liouville’s type. The proposed method was constrained to precise error analysis to establish the accuracy of the method. Numerical experimentation was implemented with the aid of MAPLE 18 to show convergence of the method as compared with the analytic solution.展开更多
This paper gives a solution of Problem 33 of P. Turan's as follows. For every integer n>2there is a set of nodes -1 for whichholds for all polynomials of degree <2n, where rk, pk are the fundamental polynomi...This paper gives a solution of Problem 33 of P. Turan's as follows. For every integer n>2there is a set of nodes -1 for whichholds for all polynomials of degree <2n, where rk, pk are the fundamental polynomialsof the first kind and the second kind for (0, 2)-interpolation, respeaively.展开更多
Explicit expressions of the Cotes numbers of the generalized Gaussian quadrature formulas for the Chebyshev nodes (of the first kind and the second kind) and their asymptotic behavior are given.
Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators.We begin by describing Chebfun's fa...Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators.We begin by describing Chebfun's fast capabilities for Clenshaw-Curtis and also Gauss-Legendre,-Jacobi,-Hermite,and-Laguerre quadrature,based on algorithms of Waldvogel and Glaser,Liu and Rokhlin.Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles,fractional derivatives and integrals,functions defined on unbounded intervals,and the fast computation of weights for barycentric interpolation.展开更多
This paper develops a clase of quadrature formula with first derivativesIt is demonstrated that its degree of accuracy is not less than 2k+1 for a set of distinct nodes {x0,x1,...,xn} over interval [a,b],and just only...This paper develops a clase of quadrature formula with first derivativesIt is demonstrated that its degree of accuracy is not less than 2k+1 for a set of distinct nodes {x0,x1,...,xn} over interval [a,b],and just only 2k+1 for equally spaced nodes.Far overcoming the shortcoming of involving a great number of manual computations for the integration rules of the Hermitian interpolation formula,some simple formulas for computing automatically βi,γi and E [f] by computer are given,especially for equally spaced nodes.展开更多
We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality wit...We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality with the exact constant and the optimal argument in the modulus of continuity. In particular, Jackson's inequality with the optimal parameters is obtained for classical modulus of continuity of order r and Thue-Morse modulus of continuity of order r∈ N. These results are based on the solution of the generalized Logan problem for entire functions of exponential type. For it we construct a new quadrature formulas for entire functions of exponential type.展开更多
The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev po...The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev polynomial of the second kind.Explicit expressions for the corresponding coefficients of the quadrature rule are also found after expansions of the divided diffierences,which was proposed in[14].展开更多
基金supported by the National Natural Science Foundation of China(61573230,61473034,51777012)Beijing Nova Programme Interdisciplinary Cooperation Project(Z161100004916041)
文摘The phenomenon of mixed-mode is one of the most important characteristics of switched delay systems. If a networked control system(NCS) with network induced delays and packet dropouts(NIDs & PDs) is recast as a switched delay system, it is imperative to consider the effects of mixed-modes in the stability analysis for an NCS. In this paper, with the help of the interpolatory quadrature formula and the average dwell time method, stabilization of NCSs using a mixed-mode based switched delay system method is investigated based on a novel constructed Lyapunov-Krasovskii functional. With the Finsler's lemma, new exponential stabilizability conditions with less conservativeness are given for the NCS. Finally, an illustrative example is provided to verify the effectiveness of the developed results.
基金the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008),National Science Foundation of China(10971074).
文摘A class of numerical methods is developed for second order Volterra integrodifferential equations by using a Legendre spectral approach.We provide a rigorous error analysis for the proposed methods,which shows that the numerical errors decay exponentially in the L∞-norm and L2-norm.Numerical examples illustrate the convergence and effectiveness of the numerical methods.
文摘In this paper, we examine the space discretization of time fractional telegraph equation (TFTE) with Mamadu-Njoseh orthogonal basis functions. For ease and convenience, we deal with the fractional derivative by first converting from Caputo’s type to Riemann-Liouville’s type. The proposed method was constrained to precise error analysis to establish the accuracy of the method. Numerical experimentation was implemented with the aid of MAPLE 18 to show convergence of the method as compared with the analytic solution.
基金Project supported by the National Natural Science Foundation of China.
文摘This paper gives a solution of Problem 33 of P. Turan's as follows. For every integer n>2there is a set of nodes -1 for whichholds for all polynomials of degree <2n, where rk, pk are the fundamental polynomialsof the first kind and the second kind for (0, 2)-interpolation, respeaively.
文摘Explicit expressions of the Cotes numbers of the generalized Gaussian quadrature formulas for the Chebyshev nodes (of the first kind and the second kind) and their asymptotic behavior are given.
基金supported by the MathWorks,Inc.,King Abdullah University of Science and Technology (KAUST) (Award No. KUK-C1-013-04)the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC (Grant Agreement No. 291068)
文摘Chebfun is a Matlab-based software system that overloads Matlab's discrete operations for vectors and matrices to analogous continuous operations for functions and operators.We begin by describing Chebfun's fast capabilities for Clenshaw-Curtis and also Gauss-Legendre,-Jacobi,-Hermite,and-Laguerre quadrature,based on algorithms of Waldvogel and Glaser,Liu and Rokhlin.Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles,fractional derivatives and integrals,functions defined on unbounded intervals,and the fast computation of weights for barycentric interpolation.
文摘This paper develops a clase of quadrature formula with first derivativesIt is demonstrated that its degree of accuracy is not less than 2k+1 for a set of distinct nodes {x0,x1,...,xn} over interval [a,b],and just only 2k+1 for equally spaced nodes.Far overcoming the shortcoming of involving a great number of manual computations for the integration rules of the Hermitian interpolation formula,some simple formulas for computing automatically βi,γi and E [f] by computer are given,especially for equally spaced nodes.
基金Supported by the Russian Foundation for Basic Research(Grant No.16-01-00308)
文摘We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality with the exact constant and the optimal argument in the modulus of continuity. In particular, Jackson's inequality with the optimal parameters is obtained for classical modulus of continuity of order r and Thue-Morse modulus of continuity of order r∈ N. These results are based on the solution of the generalized Logan problem for entire functions of exponential type. For it we construct a new quadrature formulas for entire functions of exponential type.
基金Supported by the National Natural Science Foundation of China(10571121) Supported by the Natural Science Foundation of Guangdong Province(5010509)
文摘The goal here is to give a simple approach to a quadrature formula based on the divided diffierences of the integrand at the zeros of the nth Chebyshev polynomial of the first kind,and those of the(n-1)st Chebyshev polynomial of the second kind.Explicit expressions for the corresponding coefficients of the quadrature rule are also found after expansions of the divided diffierences,which was proposed in[14].