A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,...A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,we obtain a family of closed-loop equilibrium strategies via multi-person differential games.This result extends Yong’s work(2017) in the case of stochastic differential equations,where a unique closed-loop equilibrium strategy can be derived under standard conditions(namely,the control cost weighting matrix is uniformly positive definite,and the other weighting coefficients are positive semidefinite).展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching ...This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.展开更多
In this paper,a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals.The coefficients in the state equation and the weighting matrices i...In this paper,a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals.The coefficients in the state equation and the weighting matrices in the cost functionals are all deterministic.Closed-loop strategies are introduced,which require to be independent of initial states;and such a nature makes it very useful and convenient in applications.The follower first solves a stochastic linear quadratic optimal control problem,and his optimal closed-loop strategy is characterized by a Riccati equation,together with an adapted solution to a linear backward stochastic differential equation.Then the leader turns to solve a stochastic linear quadratic optimal control problem of a forward-backward stochastic differential equation,necessary conditions for the existence of the optimal closed-loop strategy for the leader is given by a Riccati equation.Some examples are also given.展开更多
In this work,the author proposes a discretization for stochastic linear quadratic control problems(SLQ problems)subject to stochastic differential equations.The author firstly makes temporal discretization and obtains...In this work,the author proposes a discretization for stochastic linear quadratic control problems(SLQ problems)subject to stochastic differential equations.The author firstly makes temporal discretization and obtains SLQ problems governed by stochastic difference equations.Then the author derives the convergence rates for this discretization relying on stochastic differential/difference Riccati equations.Finally an algorithm is presented.Compared with the existing results relying on stochastic Pontryagin-type maximum principle,the proposed scheme avoids solving backward stochastic differential equations and/or conditional expectations.展开更多
In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong form...In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong formulation and two weak formulations.For the strong formulation,the solution is directly parameterized with a neural network and optimized by minimizing the PDEresidual.It can be proved that the convergence of the optimization problem guarantees the convergence of the approximate solution in the L^(1)sense.Theweak formulations are derived following(Brenier in Examples of hidden convexity in nonlinear PDEs,2020)which characterizes the very weak solutions of QPME.Specifically speaking,the solutions are represented with intermediate functions who are parameterized with neural networks and are trained to optimize the weak formulations.Extensive numerical tests are further carried out to investigate the pros and cons of each formulation in low and high dimensions.This is an initial exploration made along the line of solving high-dimensional nonlinear PDEs with neural network-based methods,which we hope can provide some useful experience for future investigations.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.12025105, 11971334 and 11931011)the Chang Jiang Scholars Program and the Science Development Project of Sichuan University (Grant Nos. 2020SCUNL101 and 2020SCUNL201)。
文摘A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,we obtain a family of closed-loop equilibrium strategies via multi-person differential games.This result extends Yong’s work(2017) in the case of stochastic differential equations,where a unique closed-loop equilibrium strategy can be derived under standard conditions(namely,the control cost weighting matrix is uniformly positive definite,and the other weighting coefficients are positive semidefinite).
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
基金supported by Vietnam Academy of Science and Technology(Grant No.VAST01.04/22-23)。
文摘This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.
基金This work was supported by National Key Research&Development Program of China under Grant No.2022YFA1006104National Natural Science Foundations of China under Grant Nos.11971266,11831010Shandong Provincial Natural Science Foundations under Grant Nos.ZR2022JQ01,ZR2020ZD24,ZR2019ZD42.
文摘In this paper,a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals.The coefficients in the state equation and the weighting matrices in the cost functionals are all deterministic.Closed-loop strategies are introduced,which require to be independent of initial states;and such a nature makes it very useful and convenient in applications.The follower first solves a stochastic linear quadratic optimal control problem,and his optimal closed-loop strategy is characterized by a Riccati equation,together with an adapted solution to a linear backward stochastic differential equation.Then the leader turns to solve a stochastic linear quadratic optimal control problem of a forward-backward stochastic differential equation,necessary conditions for the existence of the optimal closed-loop strategy for the leader is given by a Riccati equation.Some examples are also given.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.11801467the Chongqing Natural Science Foundation under Grant No.cstc2018jcyjAX0148.
文摘In this work,the author proposes a discretization for stochastic linear quadratic control problems(SLQ problems)subject to stochastic differential equations.The author firstly makes temporal discretization and obtains SLQ problems governed by stochastic difference equations.Then the author derives the convergence rates for this discretization relying on stochastic differential/difference Riccati equations.Finally an algorithm is presented.Compared with the existing results relying on stochastic Pontryagin-type maximum principle,the proposed scheme avoids solving backward stochastic differential equations and/or conditional expectations.
基金supported in part by National Science Foundation via grant DMS-2012286by Department of Energy via grant DE-SC0019449.
文摘In this paper,we propose and study neural network-based methods for solutions of high-dimensional quadratic porous medium equation(QPME).Three variational formulations of this nonlinear PDE are presented:a strong formulation and two weak formulations.For the strong formulation,the solution is directly parameterized with a neural network and optimized by minimizing the PDEresidual.It can be proved that the convergence of the optimization problem guarantees the convergence of the approximate solution in the L^(1)sense.Theweak formulations are derived following(Brenier in Examples of hidden convexity in nonlinear PDEs,2020)which characterizes the very weak solutions of QPME.Specifically speaking,the solutions are represented with intermediate functions who are parameterized with neural networks and are trained to optimize the weak formulations.Extensive numerical tests are further carried out to investigate the pros and cons of each formulation in low and high dimensions.This is an initial exploration made along the line of solving high-dimensional nonlinear PDEs with neural network-based methods,which we hope can provide some useful experience for future investigations.