This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representatio...This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representation to purse the underlying textural manifold statistically in nonparametric manner. The associative method approximately makes perceptual hierarchy in human-vision biologically coherency in specific quad-tree-pyramid structure, and the appropriate scale-value of different objects can automatically be selected by evaluating from well-defined scale function without any priori knowledge. The sufficient experiments truly demonstrate the effectiveness of scale determination in textural manifold with object localization rapidly.展开更多
文摘This paper mainly focuses on the issues about generic multi-scale object perception for detection or recognition. A novel computational model in visually-feature space is presented for scene & object representation to purse the underlying textural manifold statistically in nonparametric manner. The associative method approximately makes perceptual hierarchy in human-vision biologically coherency in specific quad-tree-pyramid structure, and the appropriate scale-value of different objects can automatically be selected by evaluating from well-defined scale function without any priori knowledge. The sufficient experiments truly demonstrate the effectiveness of scale determination in textural manifold with object localization rapidly.
基金the NNSF(10671095)China Postdoctoral Science Foundation(20070421028)+2 种基金Jiangsu Planned Projects for Post-doctoral Research Funds(0602023C)Science &Technology Innovation Fund of Nankai University (2006019)the Scientific Research Founda-tion of Guangdong Industry Technical College(2005 -11).