In this work, we introduce a class of Hilbert spaces Fq of entire functions on the disk , , with reproducing kernel given by the q-exponential function eq(z);and we prove some properties concerning Toeplitz operators ...In this work, we introduce a class of Hilbert spaces Fq of entire functions on the disk , , with reproducing kernel given by the q-exponential function eq(z);and we prove some properties concerning Toeplitz operators on this space. The definition and properties of the space extend naturally those of the well-known classical Fock space. Next, we study the multiplication operator Dq by and the q-Derivative operator on the Fock space Fq;and we prove that these operators are adjoint-operators and continuous from this space into itself. Lastly, we study a generalized translation operators and a Weyl commutation relations on Fq .展开更多
文摘In this work, we introduce a class of Hilbert spaces Fq of entire functions on the disk , , with reproducing kernel given by the q-exponential function eq(z);and we prove some properties concerning Toeplitz operators on this space. The definition and properties of the space extend naturally those of the well-known classical Fock space. Next, we study the multiplication operator Dq by and the q-Derivative operator on the Fock space Fq;and we prove that these operators are adjoint-operators and continuous from this space into itself. Lastly, we study a generalized translation operators and a Weyl commutation relations on Fq .