A new Zn(Ⅱ) coordination polymer [Zn3(btec)(OH)2(H2O)2]n (1, btec = 1,2,4,5- benzenetetracarboxylate) has been synthesized by hydrothermal reaction and its structure was determined by single-crystal X-ray d...A new Zn(Ⅱ) coordination polymer [Zn3(btec)(OH)2(H2O)2]n (1, btec = 1,2,4,5- benzenetetracarboxylate) has been synthesized by hydrothermal reaction and its structure was determined by single-crystal X-ray diffraction analysis. The title compound crystallizes in mono- clinic, space group C2/c, with a = 19.580(3), b = 5.0137(8), c = 15.975(3), β = 121.629(2)°, V = 1335.3(4)3, C10H8O12Zn3, Mr = 516.27, Z = 4, Dc = 2.568g/cm3, μ = 5.419 mm-1, F(000) = 1016, R = 0.0590 and Rw = 0.1279 for 1110 observed reflections (I 2σ(I)). X-ray analysis shows that the asymmetric unit of the title compound contains two crystallographically unique Zn(Ⅱ) atoms which are connected through the bridging carboxylate oxygen atoms of the btec ligands and μ2-bridging oxygen atoms of water molecules to generate an infinite one-dimensional chain. The adjacent chains are linked together through the benzene rings of the btec ligands to form a two-dimensional polymeric network. The adjacent two-dimensional layers are further connected together by the benzene rings of btec ligands to give the final three-dimensional structure. The benzene rings act as pillars between two layers.展开更多
Zinc and silver compounds have been studied because they have ultraviolet light barrier properties and bactericidal action, respectively. Materials with multifunctional characteristics have been sought to produce poly...Zinc and silver compounds have been studied because they have ultraviolet light barrier properties and bactericidal action, respectively. Materials with multifunctional characteristics have been sought to produce polymeric nanocomposites. In this work, the chemical modification of titanium phosphate (TiP) was carried out through a route with successive intercalations. TiP was synthesized and consecutively pre-expanded with ethylamine and pyromellitic acid. Then it was modified with zinc acetate and silver nitrate. The final product was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffractometry, field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and thermogravimetry. Infrared revealed dislocation and appearance of bands according to the intercalating agent. Inorganic salts interfered in the crystallization and melting processes of pyromellitic acid. Vanishing of the TiP hkl plane and variation and appearance of new crystallographic planes at low diffraction angles induced intercalation. SEM showed agglomerated structures. New thermal degradation events at higher temperatures endorsed the formation of zinc and silver carboxylate salts. We concluded that a new miscellaneous and multifunctional matter was achieved.展开更多
Fluorescence and cofluorescence properties of Tb(Ⅲ) solid complexes werestudied using pyromellitic acid (PMA) as ligand and fluorescence inert ions as doping elements. Thecofluorescence enhancement, a result of ligan...Fluorescence and cofluorescence properties of Tb(Ⅲ) solid complexes werestudied using pyromellitic acid (PMA) as ligand and fluorescence inert ions as doping elements. Thecofluorescence enhancement, a result of ligand sensitized fluorescence, was observed in Tb(Ⅲ) solidcomplexes doped with fluorescent inert ions La(Ⅲ), Gd(Ⅲ), Ca(Ⅲ), and Sr(Ⅲ). The effect of thetype and content of doping elements on fluorescence enhancement was studied, and optimum conditionswere determined. The results show that Gd (La, Ca, Sr) has clear cofluorescence effect in solidcomplex Tb-M-PMA system, and in present work, rare earth complex fluorescent powder that emitsbright green fluorescence at ultraviolet excitation was obtained, which had potential application asfluorescent anti-counterfeit ink.展开更多
基金supported by the Natural Science Foundation of Fujian Province(No.2010J01029)the Foundation of Education Committee of Fujian Province(Nos.JB11002 and JB10007)
文摘A new Zn(Ⅱ) coordination polymer [Zn3(btec)(OH)2(H2O)2]n (1, btec = 1,2,4,5- benzenetetracarboxylate) has been synthesized by hydrothermal reaction and its structure was determined by single-crystal X-ray diffraction analysis. The title compound crystallizes in mono- clinic, space group C2/c, with a = 19.580(3), b = 5.0137(8), c = 15.975(3), β = 121.629(2)°, V = 1335.3(4)3, C10H8O12Zn3, Mr = 516.27, Z = 4, Dc = 2.568g/cm3, μ = 5.419 mm-1, F(000) = 1016, R = 0.0590 and Rw = 0.1279 for 1110 observed reflections (I 2σ(I)). X-ray analysis shows that the asymmetric unit of the title compound contains two crystallographically unique Zn(Ⅱ) atoms which are connected through the bridging carboxylate oxygen atoms of the btec ligands and μ2-bridging oxygen atoms of water molecules to generate an infinite one-dimensional chain. The adjacent chains are linked together through the benzene rings of the btec ligands to form a two-dimensional polymeric network. The adjacent two-dimensional layers are further connected together by the benzene rings of btec ligands to give the final three-dimensional structure. The benzene rings act as pillars between two layers.
文摘Zinc and silver compounds have been studied because they have ultraviolet light barrier properties and bactericidal action, respectively. Materials with multifunctional characteristics have been sought to produce polymeric nanocomposites. In this work, the chemical modification of titanium phosphate (TiP) was carried out through a route with successive intercalations. TiP was synthesized and consecutively pre-expanded with ethylamine and pyromellitic acid. Then it was modified with zinc acetate and silver nitrate. The final product was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffractometry, field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and thermogravimetry. Infrared revealed dislocation and appearance of bands according to the intercalating agent. Inorganic salts interfered in the crystallization and melting processes of pyromellitic acid. Vanishing of the TiP hkl plane and variation and appearance of new crystallographic planes at low diffraction angles induced intercalation. SEM showed agglomerated structures. New thermal degradation events at higher temperatures endorsed the formation of zinc and silver carboxylate salts. We concluded that a new miscellaneous and multifunctional matter was achieved.
基金This work is financially supported by the Natural Science Foundation of Hunan Province (No. 01JJY3004) and Technology of China National Packaging Corporation.
文摘Fluorescence and cofluorescence properties of Tb(Ⅲ) solid complexes werestudied using pyromellitic acid (PMA) as ligand and fluorescence inert ions as doping elements. Thecofluorescence enhancement, a result of ligand sensitized fluorescence, was observed in Tb(Ⅲ) solidcomplexes doped with fluorescent inert ions La(Ⅲ), Gd(Ⅲ), Ca(Ⅲ), and Sr(Ⅲ). The effect of thetype and content of doping elements on fluorescence enhancement was studied, and optimum conditionswere determined. The results show that Gd (La, Ca, Sr) has clear cofluorescence effect in solidcomplex Tb-M-PMA system, and in present work, rare earth complex fluorescent powder that emitsbright green fluorescence at ultraviolet excitation was obtained, which had potential application asfluorescent anti-counterfeit ink.