Punching shear failure of flat concrete slabs is a complex phenomenon with brittle failure mode, meaning sudden structural failure and rapid decrease of load carrying capacity. Due to these reasons, the application of...Punching shear failure of flat concrete slabs is a complex phenomenon with brittle failure mode, meaning sudden structural failure and rapid decrease of load carrying capacity. Due to these reasons, the application of appropriate punching shear reinforcement in the slabs could be essential. To obtain the required structural strength and performance in slab-column junctions, the effect of the shear reinforcement type on the punching resistance must be known. For this purpose, numerous nonlinear finite element simulations were carried out to determine the behavior and punching shear strength of flat concrete slabs with different punching shear reinforcement types. The efficiency of different reinforcement types was also determined and compared. Accuracy of the numerical simulations was verified by experimental results. Based on the comparison of numerical results,?the partial factor for the design formula used in Eurocode 2 was calculated and was found to be higher than the actual one.展开更多
Reinforced concrete(RC)slabs are characterized by reduced construction time,versatility,and easier space partitioning.Their structural behavior is not straightforward and,specifically,punching shear strength is a curr...Reinforced concrete(RC)slabs are characterized by reduced construction time,versatility,and easier space partitioning.Their structural behavior is not straightforward and,specifically,punching shear strength is a current research topic.In this study an experimental database of 113 RC slabs without shear reinforcement under punching loads was compiled using data available in the literature.A sensitivity analysis of the parameters involved in the punching shear strength assessment was conducted,which highlighted the importance of the flexural reinforcement that are not typically considered for punching shear strength.After a discussion of the current international standards,a new proposed model for punching shear strength and rotation of RC slabs without shear reinforcement was discussed.It was based on a simplified load-rotation curve and new failure criteria that takes into account the flexural reinforcement effects.This experimental database was used to validate the approaches of the current international standards as well as the new proposed model.The latter proved to be a potentially useful design tool.展开更多
文摘Punching shear failure of flat concrete slabs is a complex phenomenon with brittle failure mode, meaning sudden structural failure and rapid decrease of load carrying capacity. Due to these reasons, the application of appropriate punching shear reinforcement in the slabs could be essential. To obtain the required structural strength and performance in slab-column junctions, the effect of the shear reinforcement type on the punching resistance must be known. For this purpose, numerous nonlinear finite element simulations were carried out to determine the behavior and punching shear strength of flat concrete slabs with different punching shear reinforcement types. The efficiency of different reinforcement types was also determined and compared. Accuracy of the numerical simulations was verified by experimental results. Based on the comparison of numerical results,?the partial factor for the design formula used in Eurocode 2 was calculated and was found to be higher than the actual one.
基金The financial support of the A utonomous Region of Sardinia under Grant PO-FSE 2014-2020,CCI:2014-IT05SFOP021,through the project"Retrofitting,Rehabilitation and Requalification of the Historical Cultural Architectural Heritage(R3-PAS)",is acknowledged by Flavio Stochino.
文摘Reinforced concrete(RC)slabs are characterized by reduced construction time,versatility,and easier space partitioning.Their structural behavior is not straightforward and,specifically,punching shear strength is a current research topic.In this study an experimental database of 113 RC slabs without shear reinforcement under punching loads was compiled using data available in the literature.A sensitivity analysis of the parameters involved in the punching shear strength assessment was conducted,which highlighted the importance of the flexural reinforcement that are not typically considered for punching shear strength.After a discussion of the current international standards,a new proposed model for punching shear strength and rotation of RC slabs without shear reinforcement was discussed.It was based on a simplified load-rotation curve and new failure criteria that takes into account the flexural reinforcement effects.This experimental database was used to validate the approaches of the current international standards as well as the new proposed model.The latter proved to be a potentially useful design tool.