期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction 被引量:2
1
作者 Pei Li Zhao-Meng Gao +3 位作者 Xiu-Shi Huang Long-Fei Wang Wei-Feng Zhang Hai-Zhong Guo 《Frontiers of physics》 SCIE CSCD 2018年第5期127-132,共6页
Interracial resistive switching of a ferroelectric semiconductor heterojunction is highly advantageous for the newly developed ferroelectric memristors. Moreover, the interfacial state in the ferroelectric semiconduct... Interracial resistive switching of a ferroelectric semiconductor heterojunction is highly advantageous for the newly developed ferroelectric memristors. Moreover, the interfacial state in the ferroelectric semiconductor heterojunction can be gradually modified by polarization reversal, which may give rise to continuously tunable resistive switching behavior. In this work, the interfacial state of a ferroelectric BiFeO3/Nb-doped SrTiO3 junction was modulated by ferroelectric polarization reversal. The dynamics of surface screening charges on the BiFeO3 layer was also investigated by surface potential measure- ments, and the decay of the surface potential could be speeded up by the magnetic field. Moreover, ferroelectric polarization reversal of the BiFeO3 layer was tuned by the magnetic field. This finding could provide a method to enhance the ferroelectric and electrical properties of ferroelectric BiFeO3 films by tuning the magnetic field. 展开更多
关键词 ferroelectric semiconductor heterojunction ferroelectric polarization reversal pulsed laserdeposition Kelvin probe force microscopy
原文传递
AlN-Fe纳米复合薄膜:一种新型锂离子电池负极材料 被引量:1
2
作者 牛晓叶 杜小琴 +3 位作者 王钦超 吴晓京 张昕 周永宁 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第12期2517-2522,共6页
采用脉冲激光沉积技术(PLD)制备了不同比例的Al N-Fe纳米复合薄膜(Al N和Fe摩尔比为3:1;2:1;1:1;1:2),首次研究了其作为锂离子电池负极材料的电化学行为。发现当Al N和Fe的比例为2:1时,复合薄膜具有最佳的电化学性能。在500 m A·g^... 采用脉冲激光沉积技术(PLD)制备了不同比例的Al N-Fe纳米复合薄膜(Al N和Fe摩尔比为3:1;2:1;1:1;1:2),首次研究了其作为锂离子电池负极材料的电化学行为。发现当Al N和Fe的比例为2:1时,复合薄膜具有最佳的电化学性能。在500 m A·g^(-1)电流密度下,Al N-Fe(2:1)经过100次循环充放电后容量仍能保持510 m Ah·g^(-1)。对其电化学反应机理研究发现,在放电过程中,Al N-Fe纳米复合薄膜中的Al N发生分解,Al N-Fe生成Li Al合金和Li_3N。纳米Fe颗粒的引入有效提高Al N的电化学活性;在充电过程中,部分Li_3N与Fe纳米颗粒反应生成了Fe_3N,其余部分Li_3N重新生成Al N。随后的充放电过程由Fe_3N、Al N和Al三者与Li的可逆反应共同参与,保证了Al N-Fe纳米复合薄膜优异的电化学性能。该研究为设计开发新型锂离子电池电极材料提供了一种新的思路。 展开更多
关键词 锂离子电池 负极材料 氮化铝 薄膜 脉冲激光沉积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部