We have optimized the input pulse width and injection time to achieve the highest possible output pulse energy in a double-pass laser amplifier using two Nd:YAG rods. For this purpose, we have extended the Frantz–Nod...We have optimized the input pulse width and injection time to achieve the highest possible output pulse energy in a double-pass laser amplifier using two Nd:YAG rods. For this purpose, we have extended the Frantz–Nodvik equation by simultaneously including both spontaneous emission and pump energy variation. The effective pump energy of the flash lamp was 8.84 J for each gain medium. The energy of 1 J could be amplified to an output energy of 12.17 J with the maximum achieved extraction efficiency of 63.18% when an input pulse having a pulse width of 168 μs is sent 10 μs after the absorbed pump energy becomes the maximum value.展开更多
An extensive study of the thermal properties of Lithium Sodium Sulphate Hexa hydrate (LSSW) single crystal, with Trigonal structure, has been carried out using ultrasonic Pulse Echo Overlap (PEO) technique, Differenti...An extensive study of the thermal properties of Lithium Sodium Sulphate Hexa hydrate (LSSW) single crystal, with Trigonal structure, has been carried out using ultrasonic Pulse Echo Overlap (PEO) technique, Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA). The temperature variation of elastic constants of LiNa3(SO4)2·6H2O single crystal have been reported for the first time. The second order elastic stiffness constants C11,?C33, C44, along the various directions in the crystal have been determined in the temperature range 300 - 330 K. The change in velocity with temperature with respect to the room temperature value has been measured using PEO technique. Significant anomalies were observed in C11?and C33?at 316 K. The elastic constant C12?has shown no variation in the temperature range 300 - 319 K. A minor deviation for C44?at 305 K following a parabolic change has been observed. The minor anomalies observed in the elastic constants of LSSW may be due to its dehydration of water of crystallization in the range 304 - 319 K. DTA studies showed an appreciable endothermic change in the range 309 K-369.79 K. TGA curve exhibited a decrease in weight of 1.687 mg in the temperature range 304 K-360 K. The minor anomalies observed in the elastic constants of LSSW may be due to loosing of its water of crystallization in the range 309 - 319 K. On loosing water there will not be any change in chemical structure but there will be physical change associated with loosing of water molecule.展开更多
基金supported by the Industrial Strategic Technology development program,10048964the Ministry of Trade,Industry&Energy(MI,Korea)
文摘We have optimized the input pulse width and injection time to achieve the highest possible output pulse energy in a double-pass laser amplifier using two Nd:YAG rods. For this purpose, we have extended the Frantz–Nodvik equation by simultaneously including both spontaneous emission and pump energy variation. The effective pump energy of the flash lamp was 8.84 J for each gain medium. The energy of 1 J could be amplified to an output energy of 12.17 J with the maximum achieved extraction efficiency of 63.18% when an input pulse having a pulse width of 168 μs is sent 10 μs after the absorbed pump energy becomes the maximum value.
文摘An extensive study of the thermal properties of Lithium Sodium Sulphate Hexa hydrate (LSSW) single crystal, with Trigonal structure, has been carried out using ultrasonic Pulse Echo Overlap (PEO) technique, Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TGA). The temperature variation of elastic constants of LiNa3(SO4)2·6H2O single crystal have been reported for the first time. The second order elastic stiffness constants C11,?C33, C44, along the various directions in the crystal have been determined in the temperature range 300 - 330 K. The change in velocity with temperature with respect to the room temperature value has been measured using PEO technique. Significant anomalies were observed in C11?and C33?at 316 K. The elastic constant C12?has shown no variation in the temperature range 300 - 319 K. A minor deviation for C44?at 305 K following a parabolic change has been observed. The minor anomalies observed in the elastic constants of LSSW may be due to its dehydration of water of crystallization in the range 304 - 319 K. DTA studies showed an appreciable endothermic change in the range 309 K-369.79 K. TGA curve exhibited a decrease in weight of 1.687 mg in the temperature range 304 K-360 K. The minor anomalies observed in the elastic constants of LSSW may be due to loosing of its water of crystallization in the range 309 - 319 K. On loosing water there will not be any change in chemical structure but there will be physical change associated with loosing of water molecule.