期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于相关性变量筛选偏最小二乘回归的多维相关时间序列建模方法 被引量:5
1
作者 苏卫星 冉顺义 +1 位作者 刘芳 赵建军 《信息与控制》 CSCD 北大核心 2021年第4期395-402,共8页
针对许多领域中的时间序列存在维数过高以及变量间多重相关性严重等问题,提出一种相关性变量筛选偏最小二乘回归(CVS-PLSR)建模算法.该算法通过引入基于相关性的特征选择(CFS)来获取最优特征子集,进而实现数据降维,并选用偏最小二乘回归... 针对许多领域中的时间序列存在维数过高以及变量间多重相关性严重等问题,提出一种相关性变量筛选偏最小二乘回归(CVS-PLSR)建模算法.该算法通过引入基于相关性的特征选择(CFS)来获取最优特征子集,进而实现数据降维,并选用偏最小二乘回归法(PLSR)作为建模的核心算法,有效地解决了变量间多重相关性带来的危害.使用矿浆元素品位预测数据对所提算法进行验证,改进的CVS-PLSR算法得到的模型最精简,测试集均方根误差仅为1.6902,预测值与实测值相关性达到了97%以上.通过仿真实验和模型评价指标对比结果可以确定所提算法具有很好的实用性和鲁棒性,所得模型更简化、精度更高. 展开更多
关键词 时间序列 多重相关性 特征选择 偏最小二乘回归(PLSR) 矿浆元素品位预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部