期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
肺部CT图像中的解剖结构分割方法综述 被引量:7
1
作者 边子健 覃文军 +1 位作者 刘积仁 赵大哲 《中国图象图形学报》 CSCD 北大核心 2018年第10期1450-1471,共22页
目的高分辨率多层螺旋CT是临床医生研究肺部解剖结构功能、评估生理状态、检测和诊断病变的主要影像学工具。鉴于肺部各解剖结构间特殊的关联关系和图像成像缺陷、组织病变等干扰因素对分割效果的影响,学术界已在经典图像处理方法基础... 目的高分辨率多层螺旋CT是临床医生研究肺部解剖结构功能、评估生理状态、检测和诊断病变的主要影像学工具。鉴于肺部各解剖结构间特殊的关联关系和图像成像缺陷、组织病变等干扰因素对分割效果的影响,学术界已在经典图像处理方法基础上针对CT图像中的肺部解剖结构分割进行了大量研究。方法通过对相关领域有代表性或前沿性文献的归纳总结,系统性地梳理了现有肺组织、肺气管、肺血管、肺裂纹、肺叶或肺段等解剖结构CT图像分割方法的主要流程、方法理论、关键技术和优缺点,讨论了各解剖结构分割的参考数据获取、实验设计方法和结果评价指标。结果分析了现有研究在结果精度和鲁棒性方面所面临的挑战性问题,以及基于分割结果在定位病变、定量测量、提取其他结构等方面展开的热点应用,特别详述了当前被重点关注的深度学习方法在本领域的工作进展,同时展望了本领域在分割理论方法和后续处理等步骤的发展趋势,并探索了如何在实践中根据分割结果发现新的临床生物标志。结论快速精确地从CT图像中分割肺部各解剖结构可以获取清晰直观的3维可视化结构影像,展开解剖结构内部的定量参数测量或结构之间的关联关系分析能提供客观、有效的肺部组织疾病辅助诊断依据信息,可以大大减轻临床医生的阅片负担、提高工作效率,具有重要的理论研究意义和临床应用价值。 展开更多
关键词 CT图像 肺组织分割 肺气管分割 肺血管分割 肺叶分割
原文传递
基于CT图像的肺气管树3D分割方法的研究 被引量:5
2
作者 李翠芳 任彦华 +1 位作者 王远军 聂生东 《中国医学物理学杂志》 CSCD 2011年第5期2867-2871,共5页
目的:对肺部气管树的分割在临床上具有重要应用价值。针对目前肺气管树分割存在的问题,本文提出了一种结合区域生长和形态学方法的气管树3D分割的方法。方法:首先,采用基于3D联通区域与形态学的方法分割出CT序列图像中的肺实质;其次,利... 目的:对肺部气管树的分割在临床上具有重要应用价值。针对目前肺气管树分割存在的问题,本文提出了一种结合区域生长和形态学方法的气管树3D分割的方法。方法:首先,采用基于3D联通区域与形态学的方法分割出CT序列图像中的肺实质;其次,利用3D区域生长法初步提取气管树;然后,利用形态学分割方法选取细小气管候选区域,并与上一步分割结果合成三维肺气管区域;最后,再次利用区域生长法去除伪气管区域,提取出最终的气管树。结果:实验结果表明,三维区域生长方法能够很好地获得气管/主支气管、段气管及主要的气管分支,而形态学方法能够有效地检测出细小气管区域。所以利用本文方法可以简单、有效地提取出肺气管树,并防止区域生长过程中的遗漏现象。结论:本文方法可为肺部气管的定量分析奠定基础,具有十分重要的临床诊断意义。 展开更多
关键词 CT图像 气管树 3D分割
下载PDF
肺部CT图像气管树分割技术研究进展 被引量:3
3
作者 段辉宏 龚敬 +2 位作者 王丽嘉 李鑫宇 聂生东 《中国生物医学工程学报》 CAS CSCD 北大核心 2018年第6期739-748,共10页
肺部气管是人体与外界进行气体交换的唯一通路;其解剖结构信息可用于诊断呼吸系统疾病。计算机断层扫描技术(CT)是检测呼吸系统疾病的主要手段,但因就诊人数多、图像数据量大等因素;导致人工阅片费时费力。而肺部气管树的自动提取与分割... 肺部气管是人体与外界进行气体交换的唯一通路;其解剖结构信息可用于诊断呼吸系统疾病。计算机断层扫描技术(CT)是检测呼吸系统疾病的主要手段,但因就诊人数多、图像数据量大等因素;导致人工阅片费时费力。而肺部气管树的自动提取与分割;是实现自动化定量分析与呼吸系统疾病辅助诊断的前提。首先对肺部气管树分割技术的背景及意义进行介绍;然后分析对比传统分割技术、基于管状结构检测的分割技术以及基于机器学习的分割技术所运用的研究方法和存在的问题。最后指出提高肺部气管树分割效果;依赖于将气管分割技术与泄漏剔除技术相互结合;需要在尽可能分割出多数气管树分枝的基础上;消除分割结果中存在的伪气管区域。 展开更多
关键词 CT图像 肺部气管 分割
下载PDF
最优阈值生长和形态学结合的肺气道树分割方法 被引量:3
4
作者 王昌 黄煜峰 +2 位作者 王兴家 冯焕清 李传富 《北京生物医学工程》 2010年第3期241-244,260,共5页
在肺气道树分割的过程中,由于部分容积效应和噪声污染的影响,容易出现支气管断裂和分割泄漏现象,因此不能分割出精确肺部气道树。为此本文提出一种最优阈值生长和形态学结合的气道树分割方法。首先利用最优阈值生长算法分割初略的肺部... 在肺气道树分割的过程中,由于部分容积效应和噪声污染的影响,容易出现支气管断裂和分割泄漏现象,因此不能分割出精确肺部气道树。为此本文提出一种最优阈值生长和形态学结合的气道树分割方法。首先利用最优阈值生长算法分割初略的肺部气道树,利用灰度重建的形态学算子提取潜在的精细肺气管区域,然后将上述两种分割结果合成一个完整的肺部气道树,最后利用种子点区域生长法去除结果中的伪气管区域,得到包含第5级以及约60%第6级的支气管。本方法有效解决了高精度肺气道树分割中的支气管断裂和泄漏问题,有较好的鲁棒性。 展开更多
关键词 灰度尺度重建 肺部气道树分割 最优阈值区域生长 高分辨率CT 形态学算子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部