针对φ73.0 mm×5.51 mm N80 EU TBG油管粘扣和脱扣事故进行了深入调查研究,对粘扣和脱扣的油管样品进行了宏观分析;对该批油管螺纹接头加工质量进行了全面检测;对油管材质进行了理化试验;对油管上、卸扣性能和拉伸性能进行了系统...针对φ73.0 mm×5.51 mm N80 EU TBG油管粘扣和脱扣事故进行了深入调查研究,对粘扣和脱扣的油管样品进行了宏观分析;对该批油管螺纹接头加工质量进行了全面检测;对油管材质进行了理化试验;对油管上、卸扣性能和拉伸性能进行了系统试验。通过试验分析和研究,认为油管螺纹加工质量和材质符合标准,油管脱扣是由于粘扣后接头连接强度降低所致,油管粘扣是操作不当引起的。展开更多
This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are re...This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load-displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.展开更多
The paper gives an analysis on technical characteristics of repair techniques for friction stir welding defects. To overcome the defects,a new repair technique, inertia friction pull plug welding( IFPPW), was research...The paper gives an analysis on technical characteristics of repair techniques for friction stir welding defects. To overcome the defects,a new repair technique, inertia friction pull plug welding( IFPPW), was researched and its equipment was developed as well. Elementary datum was achieved by investigating the influences of technological parameters on mechanical properties and by analyzing the structural characteristics of repair joint with IFPPW. The study shows that the stability and reliability of welding process of IFPPW can be guaranteed through the constant energy from the flywheel.Integrated with the advantages of friction pull plug welding,the IFPPW,free from back anvil,is considered as a promising technique in repair of termination keyhole of bobbin tool friction stir welding and point-like defects in aluminum alloy welding.展开更多
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini...Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.展开更多
文摘针对φ73.0 mm×5.51 mm N80 EU TBG油管粘扣和脱扣事故进行了深入调查研究,对粘扣和脱扣的油管样品进行了宏观分析;对该批油管螺纹接头加工质量进行了全面检测;对油管材质进行了理化试验;对油管上、卸扣性能和拉伸性能进行了系统试验。通过试验分析和研究,认为油管螺纹加工质量和材质符合标准,油管脱扣是由于粘扣后接头连接强度降低所致,油管粘扣是操作不当引起的。
文摘This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load-displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.
文摘The paper gives an analysis on technical characteristics of repair techniques for friction stir welding defects. To overcome the defects,a new repair technique, inertia friction pull plug welding( IFPPW), was researched and its equipment was developed as well. Elementary datum was achieved by investigating the influences of technological parameters on mechanical properties and by analyzing the structural characteristics of repair joint with IFPPW. The study shows that the stability and reliability of welding process of IFPPW can be guaranteed through the constant energy from the flywheel.Integrated with the advantages of friction pull plug welding,the IFPPW,free from back anvil,is considered as a promising technique in repair of termination keyhole of bobbin tool friction stir welding and point-like defects in aluminum alloy welding.
基金supported by the European Research Fund for Coal and Steel in the AMSSTED Programme RFCR-CT-2013-00001
文摘Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.