为提高通勤者使用公交出行的比例,有效缓解城市交通拥堵,对应用智能公交系统数据(Advanced Public Transportation Systems,APTS)获得公交通勤出行需求的方法进行研究.采集APTS数据,通过对公交IC卡数据和智能调度系统数据的关联获得公...为提高通勤者使用公交出行的比例,有效缓解城市交通拥堵,对应用智能公交系统数据(Advanced Public Transportation Systems,APTS)获得公交通勤出行需求的方法进行研究.采集APTS数据,通过对公交IC卡数据和智能调度系统数据的关联获得公交乘客的上车站点信息.根据早、晚高峰的出行频率判断公交通勤乘客,利用通勤出行的时间和空间特征确定居住地点和工作地点.以此基本思路,提出公交卡乘客通勤OD分布估计算法,并应用海量APTS系统数据对算法进行了试验和分析.最后,通过与基于'出行链'的方法进行比较,分析了算法的精度.本文提出的方法具有精度高、可操作性强的优点,为快速、经济地获取公交通勤OD分布提供了一种新的途径.展开更多
智能公交系统(Advanced Public Transportation Systems,APTS)数据具有海量、类型多样等大数据的典型特征,对其进行分析和挖掘可能获得丰富的公交出行特征和规律.构建基于APTS大数据的公交出行多维分析框架,在计算乘客出行时空信息(上...智能公交系统(Advanced Public Transportation Systems,APTS)数据具有海量、类型多样等大数据的典型特征,对其进行分析和挖掘可能获得丰富的公交出行特征和规律.构建基于APTS大数据的公交出行多维分析框架,在计算乘客出行时空信息(上车、下车和换乘)的基础上,建立包含4个维度(乘客、时间、空间和行为)的公交出行数据模型,系统提出基于5种联机分析处理方法的公交出行分析内容.应用APTS大数据对模型和方法进行了实验和验证,研究结果表明,该方法能够便捷地分析不同维度、不同粒度的公交出行信息,不仅能够应用于公交乘客出行行为的研究,还能够为城市公交系统的规划和管理提供决策支持.展开更多
文摘为提高通勤者使用公交出行的比例,有效缓解城市交通拥堵,对应用智能公交系统数据(Advanced Public Transportation Systems,APTS)获得公交通勤出行需求的方法进行研究.采集APTS数据,通过对公交IC卡数据和智能调度系统数据的关联获得公交乘客的上车站点信息.根据早、晚高峰的出行频率判断公交通勤乘客,利用通勤出行的时间和空间特征确定居住地点和工作地点.以此基本思路,提出公交卡乘客通勤OD分布估计算法,并应用海量APTS系统数据对算法进行了试验和分析.最后,通过与基于'出行链'的方法进行比较,分析了算法的精度.本文提出的方法具有精度高、可操作性强的优点,为快速、经济地获取公交通勤OD分布提供了一种新的途径.
文摘智能公交系统(Advanced Public Transportation Systems,APTS)数据具有海量、类型多样等大数据的典型特征,对其进行分析和挖掘可能获得丰富的公交出行特征和规律.构建基于APTS大数据的公交出行多维分析框架,在计算乘客出行时空信息(上车、下车和换乘)的基础上,建立包含4个维度(乘客、时间、空间和行为)的公交出行数据模型,系统提出基于5种联机分析处理方法的公交出行分析内容.应用APTS大数据对模型和方法进行了实验和验证,研究结果表明,该方法能够便捷地分析不同维度、不同粒度的公交出行信息,不仅能够应用于公交乘客出行行为的研究,还能够为城市公交系统的规划和管理提供决策支持.