High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice co...High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice constants and mass density of the MgSiO3 crystal as functions of pressure are computed, and the corresponding bulk modulus and bulk velocity are evaluated. Our theoretical results agree well with the high-pressure experimental data. A thermodynamic method is introduced to correct the temperature effect on the O-K first-principles results of bulk wave velocity, bulk modulus and mass density in lower mantle PIT range. Taking into account the temperature corrections, the corrected mass density, bulk modulus and bulk wave velocity of MgSiO3-perovskite are estimated from the first-principles results to be 2%, 4%, and 1% lower than the preliminary reference Earth model (PREM) profile, respectively, supporting the possibility of a pure perovskite lower mantle model.展开更多
By employing the first-principles pseudopotential plane-wave method, the physical properties of zincblende ZnO are investigated in comparison with those of the common wurtzite structure. Zincblende ZnO is predicted to...By employing the first-principles pseudopotential plane-wave method, the physical properties of zincblende ZnO are investigated in comparison with those of the common wurtzite structure. Zincblende ZnO is predicted to be a direct gap semiconductor. Compared to the wurtzite structure, the zincblende ZnO is characterized by smaller bandgap and pressure coefficient, larger electron effective mass, increasing static dielectric constants and more covalent bonding. Furthermore, the optical properties including dielectric function and energy loss function of zincblende ZnO were obtained and analysed with some features. These aspects reveal promising applications of zincblende ZnO in optoelectronic devices.展开更多
By exactly solving the effective two-body interaction for a two-dimensional electron system with layer thickness and an in-plane magnetic field, we recently found that the effective interaction can be described by the...By exactly solving the effective two-body interaction for a two-dimensional electron system with layer thickness and an in-plane magnetic field, we recently found that the effective interaction can be described by the generalized pseudopoten- tials (PPs) without the rotational symmetry. With this pseudopotential description, we numerically investigate the behavior of the fractional quantum Hall (FQH) states both in the lowest Landau level (LLL) and first excited Landau level (1LL). The enhancements of the 7/3 FQH state on the 1LL for a small tilted magnetic field are observed when layer thickness is larger than some critical values, while the gap of the 1/3 state in the LLL monotonically reduced with increasing the in-plane field. From the static structure factor calculation, we find that the systems are strongly anisotropic and finally enter into a stripe phase with a large tilting. With considering the Landau level mixing correction on the two-body interaction, we find the strong LL mixing cancels the enhancements of the FQH states in the 1LL.展开更多
The lattice dynamics of rhombohedral GaG6 is studied as a function orpressure to probe Its high pressure phase with low superconducting transition temperature using the density functional liner-response theory. The pr...The lattice dynamics of rhombohedral GaG6 is studied as a function orpressure to probe Its high pressure phase with low superconducting transition temperature using the density functional liner-response theory. The pressureinduced phase transition in CaC6 is attributable to the softening transverse acoustic (TA) phonon mode at the zone boundary X (0.5, 0.0, 0.5) point. The high pressure phase is then explored by performing fully structural optimization in the supercell which accommodates the atomic displacements corresponding to the eigenvectors of the unstable mode of TA(X). The high-pressure phase is predicted to be a monoclinic unit cell with space group P21/m.展开更多
We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C5oSi10 and its derivatives, a C40Si20-C40Si20 dimer and a C40Si20-based nanowire by using density-functional theory, The ...We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C5oSi10 and its derivatives, a C40Si20-C40Si20 dimer and a C40Si20-based nanowire by using density-functional theory, The optimized configuration of the C40Si20-based nanowire exhibits a regular dumbbell-shaped chain nanostructure. The electronic structure calculations indicate that the HOMO-LUMO gaps of the heterofullerene-based materials can be greatly modified by substitutionally doping with Si atoms and show a decreasing trend with increase cluster size. Unlike the band structures of the conventional wide band gap silicon carbide nanomaterials, the C40Si20- based nanowire has a very narrow direct band gap of 0.087eV.展开更多
Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(...Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems.展开更多
The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier fo...The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors.The calculated gap values in the range of 2.84 eV~3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data.The CdSe/CdS nanosystems were considered as layered ones and as quantum dots.The layered CdSe/CdS systems with two-layer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps(2.6 eV and 3.3 eV),while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure.Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps:approximately of 2.5 eV and 3.0 eV.展开更多
The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”typ...The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”type is the most favorable energetically.However the extrapolation of the behavior of the energy per Cd-Se atomic pair shows that for n>130(corresponding to a size of about 2 nm),particles with a“wurtzite”structure can be more advantageous.Particles of the“wurtzite”and“rock-salt”types have an electronic structure with an energy gap.For particles with the“wurtzite”structure,the gap width decreases with increasing particle size:from 3.3 eV to 2.2 eV as the particle increases from 0.5 nm to 1.5 nm.For particles of the“rock-salt”type,the gap width grows slightly,remaining about 3 eV.“Sphalerite”-type particles have a metal-like electronic structure.展开更多
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time ...The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.展开更多
Based on experimental results that VH0.81/MgH2 interface was found during the process of mechanically milling MgH2+5at.%V nanocomposite, H atoms diffusion and adsorption properties of MgH2-V systems have been investig...Based on experimental results that VH0.81/MgH2 interface was found during the process of mechanically milling MgH2+5at.%V nanocomposite, H atoms diffusion and adsorption properties of MgH2-V systems have been investigated by using a first-principles plane-wave pseudopotential method based on the density functional theory. The results are as follows. When VH/MgH2 interface is formed due to V alloying MgH2 phase, the vacancy formed by H atoms near VH phase region is more stable than that without V alloying, while vacancy near MgH2 phase region is less stable than that without V alloying. During the process of H atoms diffusion after V alloying, the max migration barrier energy of H atoms in MgH2-V systems is reduced compared with that of MgH2 phase, which means that H atoms diffuse easily. When H diffuses into VH from MgH2 across VH/MgH2 interface, among three substitutions such as the replacement of H for V vacancy, or interstitial site or V atoms, the replacement of H for V vacancy has the strongest diffusion ability, next interstitial site, and finally V atoms site. As far as H adsorbed on different surfaces of VH phase is concerned, physical adsorption is carried out more easily than chemical adsorption, and the behavior of H atoms adsorbed on the surface near VH phase region can be found more easily than that near MgH2 phase region.展开更多
The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave meth...The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave method. The results show that Zn d-X p orbital interactions play an important role in the p-type doping tendency in zinc-based Ⅱ-Ⅵ semiconductors. In ZnX, with increasing atomic number of X, Zn d-X p orbital interactions decrease and Zn s-X p orbital interactions increase. Additionally, substituting group-V elements for X will reduce the Zn d-X p orbital interactions while substituting group-VII elements for X will increase the Zn d-X p orbital interactions. The results also show that group-V-doped ZnX and group-Ⅷ-doped ZnX exhibit different optical behaviours due to their different orbital interaction effects.展开更多
The molecular constants of selected diatomic lanthanide compounds (LaH, LaO, LaF, EuH, EuO, EuF, EuS, GdO, GdF, GdH, YbH, YbO, YbF, YbS, LuH, LuO and LuF) have been calculated by using relativistic small-core pseudopo...The molecular constants of selected diatomic lanthanide compounds (LaH, LaO, LaF, EuH, EuO, EuF, EuS, GdO, GdF, GdH, YbH, YbO, YbF, YbS, LuH, LuO and LuF) have been calculated by using relativistic small-core pseudopotentials and optimized (14s13p10d8f6g)/ [6s6p5d4f3g] valence basis sets. The results are in good agreement with available experimental data, with exception of YbO and LuF. The reasons for the discrepancies in case of YbO are due to a complicated mixing of configurations in the ground state, whereas in case of LuF the binding energy estimated by experimentalists appears to be too low.展开更多
A Density functional theory method within generalized gradient approximation has been performed to obtain the static lattice parameters, oxygen positional parameter, bond length and bond angle and electronic propertie...A Density functional theory method within generalized gradient approximation has been performed to obtain the static lattice parameters, oxygen positional parameter, bond length and bond angle and electronic properties of ideal Lu2Sn207 pyrochlore. The results are in excellent agreement with available experimental measurements. Density of states (DOS) of this compound was presented and analysed. We also notice the presence of the hybridization between oxygen and Lu metal. The band structure calculations show that the compound has direct band gap of 2.67 eV at the F point in the Brillouin zone and this indicates that the material has a semi-conducting feature.展开更多
A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals, transition metal carbides and nitrides is presented. The calculations were performed by plane-wave ps...A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals, transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 40474033 and 10376024, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20050613017.
文摘High-pressure behaviour of orthorhombic MgSiO3 perovskite crystal is simulated by using the density functional theory and plane-wave pseudopotentials approach up to 120 GPa pressure at zero temperature. The lattice constants and mass density of the MgSiO3 crystal as functions of pressure are computed, and the corresponding bulk modulus and bulk velocity are evaluated. Our theoretical results agree well with the high-pressure experimental data. A thermodynamic method is introduced to correct the temperature effect on the O-K first-principles results of bulk wave velocity, bulk modulus and mass density in lower mantle PIT range. Taking into account the temperature corrections, the corrected mass density, bulk modulus and bulk wave velocity of MgSiO3-perovskite are estimated from the first-principles results to be 2%, 4%, and 1% lower than the preliminary reference Earth model (PREM) profile, respectively, supporting the possibility of a pure perovskite lower mantle model.
基金Supported by the National Natural Science Foundation of China under Grant No 50325103, and the National Basic Research Programme of China under Grant No 2005Ct3724404.
文摘By employing the first-principles pseudopotential plane-wave method, the physical properties of zincblende ZnO are investigated in comparison with those of the common wurtzite structure. Zincblende ZnO is predicted to be a direct gap semiconductor. Compared to the wurtzite structure, the zincblende ZnO is characterized by smaller bandgap and pressure coefficient, larger electron effective mass, increasing static dielectric constants and more covalent bonding. Furthermore, the optical properties including dielectric function and energy loss function of zincblende ZnO were obtained and analysed with some features. These aspects reveal promising applications of zincblende ZnO in optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674041 and 91630205)Chongqing Research Program for Basic Research and Frontier Technology(Grant No.cstc2017jcyj AX0084)
文摘By exactly solving the effective two-body interaction for a two-dimensional electron system with layer thickness and an in-plane magnetic field, we recently found that the effective interaction can be described by the generalized pseudopoten- tials (PPs) without the rotational symmetry. With this pseudopotential description, we numerically investigate the behavior of the fractional quantum Hall (FQH) states both in the lowest Landau level (LLL) and first excited Landau level (1LL). The enhancements of the 7/3 FQH state on the 1LL for a small tilted magnetic field are observed when layer thickness is larger than some critical values, while the gap of the 1/3 state in the LLL monotonically reduced with increasing the in-plane field. From the static structure factor calculation, we find that the systems are strongly anisotropic and finally enter into a stripe phase with a large tilting. With considering the Landau level mixing correction on the two-body interaction, we find the strong LL mixing cancels the enhancements of the FQH states in the 1LL.
基金Supported by the National Natural Science Foundation of China under No 10676011, the National Key Basic Research Programme of China under Nos 2005CB724400 and 2001CB711201, the Specialized Research Fund for the Doctoral Programme of Higher Education of China under Grant No 20050183062, the SRF for R0CS of SEM, the Programme for 2005 New Century Excellent Talents in University, and the2006 Project for Scientific and Technical Development of Jilin Province.
文摘The lattice dynamics of rhombohedral GaG6 is studied as a function orpressure to probe Its high pressure phase with low superconducting transition temperature using the density functional liner-response theory. The pressureinduced phase transition in CaC6 is attributable to the softening transverse acoustic (TA) phonon mode at the zone boundary X (0.5, 0.0, 0.5) point. The high pressure phase is then explored by performing fully structural optimization in the supercell which accommodates the atomic displacements corresponding to the eigenvectors of the unstable mode of TA(X). The high-pressure phase is predicted to be a monoclinic unit cell with space group P21/m.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10675075, 50402017 and 10604039, the National Basic Research Programme of China under Grant No 2005CB623602, the Program for New Century Excellent Talents in University of China, the Outstanding Youth Scientist Research Foundation of Shandong Province, and the Foundation of Ministry of Education of China under Grant Nos 2006BS04012 and 20050422006, and the Excellent Middle-Aged and Young Scientist Award Foundation of Shandong Province under Grant No 2004BS5007.
文摘We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C5oSi10 and its derivatives, a C40Si20-C40Si20 dimer and a C40Si20-based nanowire by using density-functional theory, The optimized configuration of the C40Si20-based nanowire exhibits a regular dumbbell-shaped chain nanostructure. The electronic structure calculations indicate that the HOMO-LUMO gaps of the heterofullerene-based materials can be greatly modified by substitutionally doping with Si atoms and show a decreasing trend with increase cluster size. Unlike the band structures of the conventional wide band gap silicon carbide nanomaterials, the C40Si20- based nanowire has a very narrow direct band gap of 0.087eV.
文摘Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems.
文摘The electronic states of“wurtzite”CdS nanoparticles and CdSe/CdS nanosystems with up to 80 pairs of Cd-Se or CdS atoms were calculated.The results for CdS particles were compared with the results obtained earlier for CdSe particles of the same size and with published calculations of other authors.The calculated gap values in the range of 2.84 eV~3.78 eV are typical for CdS particles of studied sizes in accordance with results of published data.The CdSe/CdS nanosystems were considered as layered ones and as quantum dots.The layered CdSe/CdS systems with two-layer CdS coverings can be interpreted in terms of combinations of two semiconductors with different energy band gaps(2.6 eV and 3.3 eV),while analogous systems with single-layer CdS coverings do not demonstrate a two-gap electron structure.Simulation of a CdSe/CdS quantum dot shows that the single-layer CdS shell demonstrates a tendency for the formation of the electronic structure with two energy gaps:approximately of 2.5 eV and 3.0 eV.
文摘The authors fulfilled calculations of the total energy and electronic states of Cd_(n)Se_(n) nanoparticle:“wurzite”,“sphalerite”and“rock-salt”types of the structure.It was shown that at n≤72 the“rock-salt”type is the most favorable energetically.However the extrapolation of the behavior of the energy per Cd-Se atomic pair shows that for n>130(corresponding to a size of about 2 nm),particles with a“wurtzite”structure can be more advantageous.Particles of the“wurtzite”and“rock-salt”types have an electronic structure with an energy gap.For particles with the“wurtzite”structure,the gap width decreases with increasing particle size:from 3.3 eV to 2.2 eV as the particle increases from 0.5 nm to 1.5 nm.For particles of the“rock-salt”type,the gap width grows slightly,remaining about 3 eV.“Sphalerite”-type particles have a metal-like electronic structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274092 and 1140040119)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK2014043338)
文摘The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [ Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multirelaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling.
基金the Ministry of Science and Technology of China (Grant No. 2006CB605104)the National Natural Science Foundation of China (Grant No. 50771044)
文摘Based on experimental results that VH0.81/MgH2 interface was found during the process of mechanically milling MgH2+5at.%V nanocomposite, H atoms diffusion and adsorption properties of MgH2-V systems have been investigated by using a first-principles plane-wave pseudopotential method based on the density functional theory. The results are as follows. When VH/MgH2 interface is formed due to V alloying MgH2 phase, the vacancy formed by H atoms near VH phase region is more stable than that without V alloying, while vacancy near MgH2 phase region is less stable than that without V alloying. During the process of H atoms diffusion after V alloying, the max migration barrier energy of H atoms in MgH2-V systems is reduced compared with that of MgH2 phase, which means that H atoms diffuse easily. When H diffuses into VH from MgH2 across VH/MgH2 interface, among three substitutions such as the replacement of H for V vacancy, or interstitial site or V atoms, the replacement of H for V vacancy has the strongest diffusion ability, next interstitial site, and finally V atoms site. As far as H adsorbed on different surfaces of VH phase is concerned, physical adsorption is carried out more easily than chemical adsorption, and the behavior of H atoms adsorbed on the surface near VH phase region can be found more easily than that near MgH2 phase region.
基金Project supported by the National Natural Science Foundation of China (Grant No 10625416).
文摘The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave method. The results show that Zn d-X p orbital interactions play an important role in the p-type doping tendency in zinc-based Ⅱ-Ⅵ semiconductors. In ZnX, with increasing atomic number of X, Zn d-X p orbital interactions decrease and Zn s-X p orbital interactions increase. Additionally, substituting group-V elements for X will reduce the Zn d-X p orbital interactions while substituting group-VII elements for X will increase the Zn d-X p orbital interactions. The results also show that group-V-doped ZnX and group-Ⅷ-doped ZnX exhibit different optical behaviours due to their different orbital interaction effects.
文摘The molecular constants of selected diatomic lanthanide compounds (LaH, LaO, LaF, EuH, EuO, EuF, EuS, GdO, GdF, GdH, YbH, YbO, YbF, YbS, LuH, LuO and LuF) have been calculated by using relativistic small-core pseudopotentials and optimized (14s13p10d8f6g)/ [6s6p5d4f3g] valence basis sets. The results are in good agreement with available experimental data, with exception of YbO and LuF. The reasons for the discrepancies in case of YbO are due to a complicated mixing of configurations in the ground state, whereas in case of LuF the binding energy estimated by experimentalists appears to be too low.
基金supported by the Scientific Research Foundation of the Education Bureau of Sichuan Province of China (Grant No.2010ZC119)
文摘A Density functional theory method within generalized gradient approximation has been performed to obtain the static lattice parameters, oxygen positional parameter, bond length and bond angle and electronic properties of ideal Lu2Sn207 pyrochlore. The results are in excellent agreement with available experimental measurements. Density of states (DOS) of this compound was presented and analysed. We also notice the presence of the hybridization between oxygen and Lu metal. The band structure calculations show that the compound has direct band gap of 2.67 eV at the F point in the Brillouin zone and this indicates that the material has a semi-conducting feature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50175082 and 10275049), and the Fund for the Doctoral Program of Higher Education (Grant No 2002486016).
文摘A first principles study of the electronic properties and bulk modulus (B0) of the fcc and bcc transition metals, transition metal carbides and nitrides is presented. The calculations were performed by plane-wave pseudopotential method in the framework of the density functional theory with local density approximation. The density of states and the valence charge densities of these solids are plotted. The results show that B0 does not vary monotonically when the number of the valence d electrons increases. B0 reaches a maximum and then decreases for each of the four sorts of solids. It is related to the occupation of the bonding and anti-bonding states in the solid. The value of the valence charge density at the midpoint between the two nearest metal atoms tends to be proportional to B0.