Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are...Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.展开更多
The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested ...The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.展开更多
The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking...The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners(π2s1/2, π1d3/2) as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur(S) to nickel(Ni), while an obvious PSS violation from silicon(Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schr?dinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.展开更多
The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is e...The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.展开更多
The relativistic mean field(RMF)model has achieved great success in describing various nuclear phenomena.However,several serious defects are common.For instance,the pseudo-spin symmetry of high-l orbits is distinctly ...The relativistic mean field(RMF)model has achieved great success in describing various nuclear phenomena.However,several serious defects are common.For instance,the pseudo-spin symmetry of high-l orbits is distinctly violated in general,leading to spurious shell closures N Z 58 and 92.This leads to problems in describing structure properties,including shell structures,nuclear masses,etc.Guided by the pseudo-spin symmetry restoration[Geng et al.,Phys.Rev.C,100:051301(2019)],a new RMF Lagrangian DD-LZ1 is developed by considering the density-dependent meson-nucleon coupling strengths.With the newly obtained RMF Lagrangian DD-LZ1,satisfactory descriptions can be obtained for the bulk properties of nuclear matter and finite nuclei.In particular,significant improvements on describing the single-particle spectra are achieved by DD-LZ1.In particular,the spurious shell closures Z 58 and 92,commonly found in previous RMF calculations,are eliminated by the new effective interaction DD-LZ1,and consistently the pseudo-spin symmetry(PSS)around the Fermi levels is reasonably restored for both low-l and high-l orbits.Moreover,the description of nuclear masses is also notably improved by DD-LZ1,as compared to the other RMF Lagrangians.展开更多
This paper aims at extending our previous work on the solution of the one-dimensional Dirac equation using the Tridiagonal Representation Approach (TRA). In the approach, we expand the spinor wavefunction in terms of ...This paper aims at extending our previous work on the solution of the one-dimensional Dirac equation using the Tridiagonal Representation Approach (TRA). In the approach, we expand the spinor wavefunction in terms of suitable square integrable basis functions that support a tridiagonal matrix representation of the wave operator. This will transform the problem from solving a system of coupled first order differential equations to solving an algebraic three-term recursion relation for the expansion coefficients of the wavefunction. In some cases, solutions to this recursion relation can be related to well-known classes of orthogonal polynomials whereas in other situations solutions represent new class of polynomials. In this work, we will discuss various solvable potentials that obey the tridiagonal representation requirement with special emphasis on simple cases with spin-symmetric and pseudospin-symmetric potential couplings. We conclude by mentioning some potential applications in graphene.展开更多
Pseudo-spin-valve (PSV) sandwiches using amorphous CoNbZr alloy as soft magnetic layer were fabricated by magnetron sputtering. The giant magnetoresistance (GMR) and its dependence on the thickness of magnetic layer w...Pseudo-spin-valve (PSV) sandwiches using amorphous CoNbZr alloy as soft magnetic layer were fabricated by magnetron sputtering. The giant magnetoresistance (GMR) and its dependence on the thickness of magnetic layer were investigated. Anti-parallel magnetization alignments were observed in the samples with very thin CoNbZr thickness (2-4 nm) and a maximum GMR ratio of 6.5% was obtained. The Camley-Barnas semiclassical model was extended for amorphous layer based magnetic sandwiches by considering that the mixed layers exist between the ferromagnetic and nonmagnetic layer. The calculated results agree with the experimental results very well, indicating that the new model gives a more realistic picture of the physical processes that take place in the magnetic sandwiches. Moreover, the calculated results for amorphous sandwiches also clarify that the occurrence of maximum GMR at very small thickness of amorphous layer is ascribed to the short mean-free-path in amorphous materials.展开更多
文摘Relativistic symmetries of the Dirac equation under spin and pseudo-spin symmetries are investigated and a combina- tion of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interaction terms are considered. The energy equation is obtained by using the Nikiforov-Uvarov method and the corresponding wave functions are expressed in terms of the hypergeometric functions. The effects of the Coulomb and Yukawa tensor interactions are numerically discussed as well.
文摘The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.
基金Supported by National Natural Science Foundation of China(11675065,11711540016)
文摘The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners(π2s1/2, π1d3/2) as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur(S) to nickel(Ni), while an obvious PSS violation from silicon(Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schr?dinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.
基金King Fahd University of Petroleum and Minerals (KFUPM) for their support under research grant RG1502the material support and encouragements of the Saudi Center for Theoretical Physics (SCTP)
文摘The aim of this work is to find exact solutions of the Dirac equation in(1+1) space-time beyond the already known class.We consider exact spin(and pseudo-spin) symmetric Dirac equations where the scalar potential is equal to plus(and minus) the vector potential.We also include pseudo-scalar potentials in the interaction.The spinor wavefunction is written as a bounded sum in a complete set of square integrable basis,which is chosen such that the matrix representation of the Dirac wave operator is tridiagonal and symmetric.This makes the matrix wave equation a symmetric three-term recursion relation for the expansion coefficients of the wavefunction.We solve the recursion relation exactly in terms of orthogonal polynomials and obtain the state functions and corresponding relativistic energy spectrum and phase shift.
基金Supported by National Natural Science Foundation of China(11675065,11875152,11905088)Fundamental Research Funds for the central universities(lzujbky-2019-11)the Supercompuer Center of HIRFL。
文摘The relativistic mean field(RMF)model has achieved great success in describing various nuclear phenomena.However,several serious defects are common.For instance,the pseudo-spin symmetry of high-l orbits is distinctly violated in general,leading to spurious shell closures N Z 58 and 92.This leads to problems in describing structure properties,including shell structures,nuclear masses,etc.Guided by the pseudo-spin symmetry restoration[Geng et al.,Phys.Rev.C,100:051301(2019)],a new RMF Lagrangian DD-LZ1 is developed by considering the density-dependent meson-nucleon coupling strengths.With the newly obtained RMF Lagrangian DD-LZ1,satisfactory descriptions can be obtained for the bulk properties of nuclear matter and finite nuclei.In particular,significant improvements on describing the single-particle spectra are achieved by DD-LZ1.In particular,the spurious shell closures Z 58 and 92,commonly found in previous RMF calculations,are eliminated by the new effective interaction DD-LZ1,and consistently the pseudo-spin symmetry(PSS)around the Fermi levels is reasonably restored for both low-l and high-l orbits.Moreover,the description of nuclear masses is also notably improved by DD-LZ1,as compared to the other RMF Lagrangians.
文摘This paper aims at extending our previous work on the solution of the one-dimensional Dirac equation using the Tridiagonal Representation Approach (TRA). In the approach, we expand the spinor wavefunction in terms of suitable square integrable basis functions that support a tridiagonal matrix representation of the wave operator. This will transform the problem from solving a system of coupled first order differential equations to solving an algebraic three-term recursion relation for the expansion coefficients of the wavefunction. In some cases, solutions to this recursion relation can be related to well-known classes of orthogonal polynomials whereas in other situations solutions represent new class of polynomials. In this work, we will discuss various solvable potentials that obey the tridiagonal representation requirement with special emphasis on simple cases with spin-symmetric and pseudospin-symmetric potential couplings. We conclude by mentioning some potential applications in graphene.
基金Project (90306015) supported by NSFC Project supported by Youth Foundation of Science and Technology of UESTC
文摘Pseudo-spin-valve (PSV) sandwiches using amorphous CoNbZr alloy as soft magnetic layer were fabricated by magnetron sputtering. The giant magnetoresistance (GMR) and its dependence on the thickness of magnetic layer were investigated. Anti-parallel magnetization alignments were observed in the samples with very thin CoNbZr thickness (2-4 nm) and a maximum GMR ratio of 6.5% was obtained. The Camley-Barnas semiclassical model was extended for amorphous layer based magnetic sandwiches by considering that the mixed layers exist between the ferromagnetic and nonmagnetic layer. The calculated results agree with the experimental results very well, indicating that the new model gives a more realistic picture of the physical processes that take place in the magnetic sandwiches. Moreover, the calculated results for amorphous sandwiches also clarify that the occurrence of maximum GMR at very small thickness of amorphous layer is ascribed to the short mean-free-path in amorphous materials.