Radiotherapy with concurrent chemotherapy and surgery represent the main treatment modalities in esophageal cancer.The goal of modern radiotherapy approaches,based on recent technological advances,is to minimize post-...Radiotherapy with concurrent chemotherapy and surgery represent the main treatment modalities in esophageal cancer.The goal of modern radiotherapy approaches,based on recent technological advances,is to minimize post-treatment complications by improving the gross tumor volume definition (positron emission tomography-based planning),reducing interfraction motion (image-guided radiotherapy) and intrafraction motion (respiratory-gated radiotherapy),and by better dose delivery to the precisely defined planning target volume (intensity-modulated radiotherapy and proton therapy).Reduction of radiotherapy-related toxicity is fundamental to the improvement of clinical results in esophageal cancer,although the dose escalation concept is controversial.展开更多
Protons interact with human tissue differently than do photons and these differences can be exploited in an attempt to improve the care of lung cancer patients. This review examines proton beam therapy(PBT) as a compo...Protons interact with human tissue differently than do photons and these differences can be exploited in an attempt to improve the care of lung cancer patients. This review examines proton beam therapy(PBT) as a component of a combined modality program for locally advanced lung cancers. It was specifically written for the non-radiation oncologist who desires greater understanding of this newer treatment modality. This review describes and compares photon(X-ray) radiotherapy(XRT) to PBT. The physical differences of these beams are described and the clinical literature is reviewed. Protons can be used to create treatment plans delivering significantly lower doses of radiation to the adjacent organs at risk(lungs, esophagus, and bone marrow) than photons. Clinically, PBT combined with chemotherapy has resulted in low rates of toxicity comparedto XRT. Early results suggest a possible improvement in survival. The clinical results of proton therapy in lung cancer patients reveal relatively low rates of toxicity and possible survival benefits. One randomized study is being performed and another is planned to clarify the clinical differences in patient outcome for PBT compared to XRT. Along with the development of better systemic therapy, newer forms of radiotherapy such as PBT should positively impact the care of lung cancer patients. This review provides the reader with the current status of this new technology in treating locally advanced lung cancer.展开更多
基金Supported by Research Project of the Ministry of Health of Czech Republic MZO00179906
文摘Radiotherapy with concurrent chemotherapy and surgery represent the main treatment modalities in esophageal cancer.The goal of modern radiotherapy approaches,based on recent technological advances,is to minimize post-treatment complications by improving the gross tumor volume definition (positron emission tomography-based planning),reducing interfraction motion (image-guided radiotherapy) and intrafraction motion (respiratory-gated radiotherapy),and by better dose delivery to the precisely defined planning target volume (intensity-modulated radiotherapy and proton therapy).Reduction of radiotherapy-related toxicity is fundamental to the improvement of clinical results in esophageal cancer,although the dose escalation concept is controversial.
基金Supported by Mayo Clinic provided the authors the time to write this manuscript.Conflict of Interest Statement:None of the authors has a conflict of interest regarding this manuscript
文摘Protons interact with human tissue differently than do photons and these differences can be exploited in an attempt to improve the care of lung cancer patients. This review examines proton beam therapy(PBT) as a component of a combined modality program for locally advanced lung cancers. It was specifically written for the non-radiation oncologist who desires greater understanding of this newer treatment modality. This review describes and compares photon(X-ray) radiotherapy(XRT) to PBT. The physical differences of these beams are described and the clinical literature is reviewed. Protons can be used to create treatment plans delivering significantly lower doses of radiation to the adjacent organs at risk(lungs, esophagus, and bone marrow) than photons. Clinically, PBT combined with chemotherapy has resulted in low rates of toxicity comparedto XRT. Early results suggest a possible improvement in survival. The clinical results of proton therapy in lung cancer patients reveal relatively low rates of toxicity and possible survival benefits. One randomized study is being performed and another is planned to clarify the clinical differences in patient outcome for PBT compared to XRT. Along with the development of better systemic therapy, newer forms of radiotherapy such as PBT should positively impact the care of lung cancer patients. This review provides the reader with the current status of this new technology in treating locally advanced lung cancer.