A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this ar...A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.展开更多
文摘A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.