The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is es...The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.展开更多
Protein-protein interactions(PPls)play a crucial role in drug discovery and disease treatment.However,the development of effective drugs targeting PPls remains challenging due to limited methodologies for probing thei...Protein-protein interactions(PPls)play a crucial role in drug discovery and disease treatment.However,the development of effective drugs targeting PPls remains challenging due to limited methodologies for probing their spatiotemporal anisotropy.Here,we propose a single-molecule approach using a unique force circuit to investigate Ppl dynamics and anisotropy under mechanical forces.Unlike conventional techniques,this approach enables the manipulation and real-time monitoring of individual proteins at specific amino acids with defined geometry,offering insights into molecular mechanisms at the single-molecule level.The DNA force circuit was constructed using click chemistry conjugation methods and genetic code expansion techniques,facilitating orthogonal conjugation between proteins and nucleic acids.The SET domain of the MLL1 protein and the tail of histone H3 were used as a model system to demonstrate the application of the DNA force circuit.With the use of atomic force microscopy and magnetic tweezers,optimized assembly procedures were developed.The DNA force circuit provides an exceptional platform for studying the anisotropy of PPis and holds promise for advancing drug discovery research targeted at PPIs.展开更多
The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors ...The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors involved in trafficking of various plant organelles, not all of the cargoes mobilized by different members of the myosin XI family have yet been identified. The involvement of myosins in chloroplast positioning and mitochondrial movement was demonstrated by expression of a virus-induced gene silencing (VIGS) construct in tobacco. When VIGS with two different conserved sequences from a myosin Xl motor was performed in plants with either GFP-labeled plastids or mitochondria, chloroplast positioning in the dark was abnormal, and mitochondrial movement ceased. Because these and prior obser- vations have implicated a role for myosins and the actin cytoskeleton in plastid and stromule movement, we searched for myosin tail domains that could associate with plastids and stromules. While a yellow fluorescent protein (YFP) fusion with the entire tail region of myosin XI-F was usually found only in the cytoplasm, we observed that an Arabidopsis or Nicotiana benthamiana YFP::myosin XI-F tail domain homologous to the yeast myo2p vacuole-binding domain associated with plastids and stromules after transient expression in N. benthamiana. Taken together, these observations implicate myosin motor proteins in dynamics of plastids and stromules.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of the展开更多
Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular c...Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular characteristics,expression dynamics and subcellular localization of optic atrophy protein 1(OPA1),a mitochondrial fusion and cristae maintenance-related protein,to reveal the possible regulatory mechanisms underlying mitochondrial morphology in Phascolosoma esculenta spermiogenesis.The full-length cDNA of the P.esculenta opa1 gene(Pe-opa1)is 3743 bp in length and encodes 975 amino acids.The Pe-OPA1 protein is highly conservative and includes a transmembrane domain,a GTPase domain,two helical bundle domains,and a lipid-interacting stalk.Gene and protein expression was higher in the coelomic fluid(a site of spermatid development)of male P.esculenta and increased first and then decreased from March to December.Moreover,their expression during the breeding stage was significantly higher than during the non-breeding stage,suggesting that Pe-OPA1 is involved in P.esculenta reproduction.The Pe-OPA1 protein was more abundant in components consisting of many spermatids than in components without,indicating that Pe-OPA1 mainly plays a role in the spermatid in coelomic fluid.Moreover,Pe-OPA1 was mainly detected in the spermatid mitochondria.Immunofluorescence experiments showed that the Pe-OPA1 are constitutively expressed and co-localized with mitochondria during spermiogenesis,suggesting its involvement in P.esculenta spermiogenesis.These results provide evidence for Pe-OPA1's involvement in the regulation of mitochondrial morphology during spermiogenesis.展开更多
基金This work was supported by the National Key Research and Development Program of China(2020YFC0845600)the Hubei Provincial Natural Science Foundation of China(2019CFA014)+1 种基金the Starting Research Grant for High-level Talents from Guangxi University,Nanning,ChinaPostdoctoral Research Platform Grant of Guangxi University,Nanning,China.
文摘The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CL^pro)enzyme controls coronavirus replication and is essential for its life cycle.3CL^pro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CL^pro sequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.
基金This work was supported by the National Natural Science Foundation of China[Grant 32071227 to Z.Y.,Grant 12275137 to Y.L.]Tianjin Municipal Natural Science Foundation of China(22JCYBJC01070 to Z.Y.)State Key Laboratory of Precision Measuring Technology and Instruments(Tianjin University)[Grant pilab2210 to Z.Y.].
文摘Protein-protein interactions(PPls)play a crucial role in drug discovery and disease treatment.However,the development of effective drugs targeting PPls remains challenging due to limited methodologies for probing their spatiotemporal anisotropy.Here,we propose a single-molecule approach using a unique force circuit to investigate Ppl dynamics and anisotropy under mechanical forces.Unlike conventional techniques,this approach enables the manipulation and real-time monitoring of individual proteins at specific amino acids with defined geometry,offering insights into molecular mechanisms at the single-molecule level.The DNA force circuit was constructed using click chemistry conjugation methods and genetic code expansion techniques,facilitating orthogonal conjugation between proteins and nucleic acids.The SET domain of the MLL1 protein and the tail of histone H3 were used as a model system to demonstrate the application of the DNA force circuit.With the use of atomic force microscopy and magnetic tweezers,optimized assembly procedures were developed.The DNA force circuit provides an exceptional platform for studying the anisotropy of PPis and holds promise for advancing drug discovery research targeted at PPIs.
文摘The actin cytoskeleton plays a role in mobility of many different organelles in plant cells, including chloroplasts, mitochondria, Golgi, and peroxisomes. While progress has been made in identifying the myosin motors involved in trafficking of various plant organelles, not all of the cargoes mobilized by different members of the myosin XI family have yet been identified. The involvement of myosins in chloroplast positioning and mitochondrial movement was demonstrated by expression of a virus-induced gene silencing (VIGS) construct in tobacco. When VIGS with two different conserved sequences from a myosin Xl motor was performed in plants with either GFP-labeled plastids or mitochondria, chloroplast positioning in the dark was abnormal, and mitochondrial movement ceased. Because these and prior obser- vations have implicated a role for myosins and the actin cytoskeleton in plastid and stromule movement, we searched for myosin tail domains that could associate with plastids and stromules. While a yellow fluorescent protein (YFP) fusion with the entire tail region of myosin XI-F was usually found only in the cytoplasm, we observed that an Arabidopsis or Nicotiana benthamiana YFP::myosin XI-F tail domain homologous to the yeast myo2p vacuole-binding domain associated with plastids and stromules after transient expression in N. benthamiana. Taken together, these observations implicate myosin motor proteins in dynamics of plastids and stromules.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of the
基金the Ningbo Science and Technology Plan Projects(Nos.2019B10016,2016C10004)the Major Science and Technology Projects in Zhejiang Province(No.2011C12013)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY18C190007)the Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture,the K.C.Wong Magna Fund in Ningbo University。
文摘Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular characteristics,expression dynamics and subcellular localization of optic atrophy protein 1(OPA1),a mitochondrial fusion and cristae maintenance-related protein,to reveal the possible regulatory mechanisms underlying mitochondrial morphology in Phascolosoma esculenta spermiogenesis.The full-length cDNA of the P.esculenta opa1 gene(Pe-opa1)is 3743 bp in length and encodes 975 amino acids.The Pe-OPA1 protein is highly conservative and includes a transmembrane domain,a GTPase domain,two helical bundle domains,and a lipid-interacting stalk.Gene and protein expression was higher in the coelomic fluid(a site of spermatid development)of male P.esculenta and increased first and then decreased from March to December.Moreover,their expression during the breeding stage was significantly higher than during the non-breeding stage,suggesting that Pe-OPA1 is involved in P.esculenta reproduction.The Pe-OPA1 protein was more abundant in components consisting of many spermatids than in components without,indicating that Pe-OPA1 mainly plays a role in the spermatid in coelomic fluid.Moreover,Pe-OPA1 was mainly detected in the spermatid mitochondria.Immunofluorescence experiments showed that the Pe-OPA1 are constitutively expressed and co-localized with mitochondria during spermiogenesis,suggesting its involvement in P.esculenta spermiogenesis.These results provide evidence for Pe-OPA1's involvement in the regulation of mitochondrial morphology during spermiogenesis.