In 1969, Ky Fan^[3] proved that for any continuous function f from a compact convex subset M of a normed linear space X into X, there exists x E M such that ||f(x) - x|| = dist(f(x),M). Since then, there hav...In 1969, Ky Fan^[3] proved that for any continuous function f from a compact convex subset M of a normed linear space X into X, there exists x E M such that ||f(x) - x|| = dist(f(x),M). Since then, there have appeared several generalizations, extensions and applications of this result. This paper also deals with some extensions and generalizations of this result when the underlying spaces are convex metric spaces.展开更多
The authors consider proper holomorphic mappings between smoothly bounded pseudoconvex regions in complex 2-space,where the domain is of finite type and admits a transverse circle action.The main result is that the cl...The authors consider proper holomorphic mappings between smoothly bounded pseudoconvex regions in complex 2-space,where the domain is of finite type and admits a transverse circle action.The main result is that the closure of each irreducible component of the branch locus of such a map intersects the boundary of the domain in the union of finitely many orbits of the group action.展开更多
The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for...The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for globally proper efficient solutions are established in terms of Lagrange multipliers. The new concept of globally proper saddle-point for an appropriate set-valued Lagrange map is introduced and used to characterize the globally proper efficient solutions. The results which are obtained in this paper are proven under the conditions that the ordering cone need not to have a nonempty interior.展开更多
A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condit...A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.展开更多
We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we...We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.展开更多
Let a connected compact Lie group G act on a connected symplectic orbifold of orbifold fundamental group Г. If the action preserves the symplectic structure and there is a G-equivariant and mod-Г proper momentum map...Let a connected compact Lie group G act on a connected symplectic orbifold of orbifold fundamental group Г. If the action preserves the symplectic structure and there is a G-equivariant and mod-Г proper momentum map for the lifted action on the universal branch covering orbifold, and if the lifted G-action commutes with that of Г, then the symplectic convexity theorem is still true for this kind of lifted Hamiltonian action.展开更多
In this paper, we obtain a constraint of the mean curvature for proper biharmonic submanifolds in a sphere. We give some characterizations of some proper biharmonic submanifolds with parallel mean curvature vector in ...In this paper, we obtain a constraint of the mean curvature for proper biharmonic submanifolds in a sphere. We give some characterizations of some proper biharmonic submanifolds with parallel mean curvature vector in a sphere. We also construct some new examples of proper biharmonic submanifolds in a sphere.展开更多
Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applyin...Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applying the results to vector optimization problems with nearly cone-subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier theorems for Benson proper effcient solutions.展开更多
Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we ...Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.展开更多
The concept of a cone subarcwise connected set-valued map is introduced. Several examples are given to illustrate that the cone subarcwise connected set-valued map is a proper generalization of the cone arcwise connec...The concept of a cone subarcwise connected set-valued map is introduced. Several examples are given to illustrate that the cone subarcwise connected set-valued map is a proper generalization of the cone arcwise connected set-valued map, as well as the arcwise connected set is a proper generalization of the convex set,respectively. Then, by virtue of the generalized second-order contingent epiderivative, second-order necessary optimality conditions are established for a point pair to be a local global proper efficient element of set-valued optimization problems. When objective function is cone subarcwise connected, a second-order sufficient optimality condition is also obtained for a point pair to be a global proper efficient element of set-valued optimization problems.展开更多
基金Supported by University Grants Commission, India(F. 30-238/2004(SR))
文摘In 1969, Ky Fan^[3] proved that for any continuous function f from a compact convex subset M of a normed linear space X into X, there exists x E M such that ||f(x) - x|| = dist(f(x),M). Since then, there have appeared several generalizations, extensions and applications of this result. This paper also deals with some extensions and generalizations of this result when the underlying spaces are convex metric spaces.
文摘The authors consider proper holomorphic mappings between smoothly bounded pseudoconvex regions in complex 2-space,where the domain is of finite type and admits a transverse circle action.The main result is that the closure of each irreducible component of the branch locus of such a map intersects the boundary of the domain in the union of finitely many orbits of the group action.
基金Supported by Natural Science Foundation of Ningxia (No.NZ0959)Natural Science Foundation of the State Ethnic Affairs Commission of PRC (No.09BF06)Natural Science Foundation for the Youth (No.10901004)
文摘The existence conditions of globally proper efficient points and a useful property of ic- cone-convexlike set-valued maps are obtained. Under the assumption of the ic-cone-convexlikeness, the optimality conditions for globally proper efficient solutions are established in terms of Lagrange multipliers. The new concept of globally proper saddle-point for an appropriate set-valued Lagrange map is introduced and used to characterize the globally proper efficient solutions. The results which are obtained in this paper are proven under the conditions that the ordering cone need not to have a nonempty interior.
文摘A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.
基金supported by the GRF7032/08P of the HKRGC, Hong KongNational Natural Science Foundation of China (Grant No. 10971156)
文摘We obtain rigidity results on arbitrary proper holomorphic maps F from an irreducible bounded symmetric domain Ω of rank ≥2 into any complex space Z. After lifting to the normalization of the subvariety F (Ω) Z, we prove that F must be the canonical projection map to the quotient space of Ω by a finite group of automorphisms. The approach is along the line of the works of Mok and Tsai by considering radial limits of bounded holomorphic functions derived from F and proving that proper holomorphic maps between bounded symmetric domains preserve certain totally geodesic subdomains. In contrast to the previous works, in general we have to deal with multivalent holomorphic maps for which Fatou’s theorem cannot be applied directly. We bypass the difficulty by devising a limiting process for taking radial limits of correspondences arising from proper holomorphic maps and by elementary estimates allowing us to define distinct univalent branches of the underlying multivalent map on certain subsets. As a consequence of our rigidity result, with the exception of Type-IV domains, any proper holomorphic map f : Ω→ D of Ω onto a bounded convex domain D is necessarily a biholomorphism. In the exceptional case where Ω is a Type-IV domain, either f is a biholomorphism or it is a double cover branched over a totally geodesic submanifold which can be explicitly described.
文摘Let a connected compact Lie group G act on a connected symplectic orbifold of orbifold fundamental group Г. If the action preserves the symplectic structure and there is a G-equivariant and mod-Г proper momentum map for the lifted action on the universal branch covering orbifold, and if the lifted G-action commutes with that of Г, then the symplectic convexity theorem is still true for this kind of lifted Hamiltonian action.
基金supported by National Natural Science Foundation of China (Grant No.10701007)
文摘In this paper, we obtain a constraint of the mean curvature for proper biharmonic submanifolds in a sphere. We give some characterizations of some proper biharmonic submanifolds with parallel mean curvature vector in a sphere. We also construct some new examples of proper biharmonic submanifolds in a sphere.
基金Supported by the National Natural Science Foundation of China (10571035,10871141)
文摘Under the assumption that the ordering cone has a nonempty interior and is separable (or the feasible set has a nonempty interior and is separable), we give scalarization theorems on Benson proper effciency. Applying the results to vector optimization problems with nearly cone-subconvexlike set-valued maps, we obtain scalarization theorems and Lagrange multiplier theorems for Benson proper effcient solutions.
文摘Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.
基金Supported by the National Natural Science Foundation of China Grant 11461044the Natural Science Foundation of Jiangxi Province(20151BAB201027)the Science and Technology Foundation of the Education Department of Jiangxi Province(GJJ12010)
文摘The concept of a cone subarcwise connected set-valued map is introduced. Several examples are given to illustrate that the cone subarcwise connected set-valued map is a proper generalization of the cone arcwise connected set-valued map, as well as the arcwise connected set is a proper generalization of the convex set,respectively. Then, by virtue of the generalized second-order contingent epiderivative, second-order necessary optimality conditions are established for a point pair to be a local global proper efficient element of set-valued optimization problems. When objective function is cone subarcwise connected, a second-order sufficient optimality condition is also obtained for a point pair to be a global proper efficient element of set-valued optimization problems.