Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
Flow around a cavity is characterized by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in a feedback mechanism.Direct Numerical Simulations of the flow at ...Flow around a cavity is characterized by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in a feedback mechanism.Direct Numerical Simulations of the flow at low Reynolds number has been carried out to get pressure and velocity fluctuations,for the case of un-actuated and multi frequency actuation.A Reduced Order Model for the isentropic compressible equations based on the method of Proper Orthogonal Decomposition has been constructed.The model has been extended to include the effect of control.The Reduced Order dynamical system shows a divergence in time integration.A method of calibration based on the minimization of a linear functional of error,to the sensitivity of the modes,is proposed.The calibrated low order model is used to design a feedback control of cavity flows based on an observer design.For the experimental implementation of the controller,a state estimate based on the observed pressure measurements is obtained through a linear stochastic estimation.Finally the obtained control is introduced into the Direct Numerical Simulation to obtain a decrease in spectra of the cavity acoustic mode.展开更多
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
基金supported by a Marie Curie Early Stage Research Training Fellowship of the European Community’s Sixth Framework Programme under contract number MEST CT 2005020301.
文摘Flow around a cavity is characterized by a self-sustained mechanism in which the shear layer impinges on the downstream edge of the cavity resulting in a feedback mechanism.Direct Numerical Simulations of the flow at low Reynolds number has been carried out to get pressure and velocity fluctuations,for the case of un-actuated and multi frequency actuation.A Reduced Order Model for the isentropic compressible equations based on the method of Proper Orthogonal Decomposition has been constructed.The model has been extended to include the effect of control.The Reduced Order dynamical system shows a divergence in time integration.A method of calibration based on the minimization of a linear functional of error,to the sensitivity of the modes,is proposed.The calibrated low order model is used to design a feedback control of cavity flows based on an observer design.For the experimental implementation of the controller,a state estimate based on the observed pressure measurements is obtained through a linear stochastic estimation.Finally the obtained control is introduced into the Direct Numerical Simulation to obtain a decrease in spectra of the cavity acoustic mode.