期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于KPCA和投影字典对学习的人脸识别算法 被引量:2
1
作者 邓道举 李秀梅 《计算机系统应用》 2018年第5期145-150,共6页
相比基于稀疏约束的字典学习算法和识别方法,投影字典对学习(projective Dictionary Pair Learning,DPL)具有更快的学习速度和更高的识别率.为了进一步提高DPL的识别能力,本文提出了改进DPL算法K-DPL,即将核主成分分析KPCA与DPL相结合... 相比基于稀疏约束的字典学习算法和识别方法,投影字典对学习(projective Dictionary Pair Learning,DPL)具有更快的学习速度和更高的识别率.为了进一步提高DPL的识别能力,本文提出了改进DPL算法K-DPL,即将核主成分分析KPCA与DPL相结合的识别方法.在K-DPL算法中,利用核方法,将样本映射到高维空间以解决非线性问题,再进行DPL训练,得到更具判别性的字典.ORL库上实验表明,不同训练比下K-DPL相比DPL识别率至少提高了1.5%且识别速度提高了约20倍.在扩展Yale B和AR库上,K-DPL相比DPL识别率分别提高0.3%和0.4%,且识别速度有所提高,表明K-DPL对光照和遮挡具有较好的鲁棒性. 展开更多
关键词 投影字典对学习 核主成分分析 K-DPL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部