期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TMS:一种新的海量数据多维选择Top-k查询算法 被引量:4
1
作者 韩希先 刘显敏 +1 位作者 李建中 高宏 《计算机研究与发展》 EI CSCD 北大核心 2017年第3期570-585,共16页
在许多应用中,Top-k是一种十分重要的查询类型,它在潜在的巨大数据空间中返回用户感兴趣的少量数据.Top-k查询通常具有指定的多维选择条件.分析发现:现有算法无法有效处理海量数据的多维选择Top-k查询.提出了一个基于有序列表的TMS(top-... 在许多应用中,Top-k是一种十分重要的查询类型,它在潜在的巨大数据空间中返回用户感兴趣的少量数据.Top-k查询通常具有指定的多维选择条件.分析发现:现有算法无法有效处理海量数据的多维选择Top-k查询.提出了一个基于有序列表的TMS(top-k with multi-dimensional selection)算法,有效计算海量数据上的具有多维选择的Top-k结果.TMS算法利用层次化结构的选择属性网格对原数据表执行水平划分,每一个分片的元组以面向列的模式存储,并且度量属性的列表根据其属性值降序排列.给定多维选择条件,TMS算法利用选择属性网格确定相关网格单元,有效减少需要读取的元组数量,提出双排序方法执行多维选择的渐进评价,并提出有效剪切操作来剪切不满足多维选择条件和分数要求的候选元组.实验结果表明:TMS算法性能优于现有算法. 展开更多
关键词 TMS算法 有序列表 选择属性网格 渐进选择评价 剪切操作
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部