Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for res...Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for research on the responses of terrestrial ecosystemto global change and mainly comprises two important components: climate vegetation classification and the NPP of the natural vegetation. Comparing NPP estimated from the classification indices-based model with NPP derived from measurements at 3767 sites in China indicated that the classification indices-based model was capable of estimating large scale NPP. Annual cumulative temperature above 0~C and a moisture index, two main factors affecting NPP, were spatially plotted with the ArcGIS grid tool based on measured data in 2348 meteorological stations from 1961 to 2006. The distribution of NPP for potential vegetation classes under present climate conditions was simulated by the classification indices-based model. The model estimated the total NPP of potential terrestrial vegetation of China to fluctuate between 1.93 and 4.54 Pg C year-1. It pro- vides a reliable means for scaling-up from site to regional scales, and the findings could potentially favor China's position in reducing global warming gases as outlined in the Kyoto Protocol in order to fulfill China's commitment of reducing greenhouse gases.展开更多
One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system anal...One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system analysis and dynamic prediction.Therefore,it is particularly important to conduct capacity evaluation studies on shale gas horizontal wells.In order to accurately evaluate the horizontal well productivity of shale gas staged fracturing,this paper uses a new method to evaluate the productivity of Fuling shale gas.The new method is aimed at the dynamic difference of horizontal wells and effectively analyzes the massive data,which are factors affecting the productivity of shale gas horizontal wells.According to the pressure system,production dynamic characteristics,well trajectory position,fracturing transformation mode and penetration depth,32 wells were divided into four types.Then,based on the classification,the principal component analysis methods can be used to evaluate the horizontal well productivity of shale gas.The new method of capacity evaluation has improved the accuracy by 10.25%compared with the traditional method,which provides a theoretical basis for guiding the efficient development of the horizontal wells of Fuling shale gas.展开更多
文摘Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for research on the responses of terrestrial ecosystemto global change and mainly comprises two important components: climate vegetation classification and the NPP of the natural vegetation. Comparing NPP estimated from the classification indices-based model with NPP derived from measurements at 3767 sites in China indicated that the classification indices-based model was capable of estimating large scale NPP. Annual cumulative temperature above 0~C and a moisture index, two main factors affecting NPP, were spatially plotted with the ArcGIS grid tool based on measured data in 2348 meteorological stations from 1961 to 2006. The distribution of NPP for potential vegetation classes under present climate conditions was simulated by the classification indices-based model. The model estimated the total NPP of potential terrestrial vegetation of China to fluctuate between 1.93 and 4.54 Pg C year-1. It pro- vides a reliable means for scaling-up from site to regional scales, and the findings could potentially favor China's position in reducing global warming gases as outlined in the Kyoto Protocol in order to fulfill China's commitment of reducing greenhouse gases.
文摘One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system analysis and dynamic prediction.Therefore,it is particularly important to conduct capacity evaluation studies on shale gas horizontal wells.In order to accurately evaluate the horizontal well productivity of shale gas staged fracturing,this paper uses a new method to evaluate the productivity of Fuling shale gas.The new method is aimed at the dynamic difference of horizontal wells and effectively analyzes the massive data,which are factors affecting the productivity of shale gas horizontal wells.According to the pressure system,production dynamic characteristics,well trajectory position,fracturing transformation mode and penetration depth,32 wells were divided into four types.Then,based on the classification,the principal component analysis methods can be used to evaluate the horizontal well productivity of shale gas.The new method of capacity evaluation has improved the accuracy by 10.25%compared with the traditional method,which provides a theoretical basis for guiding the efficient development of the horizontal wells of Fuling shale gas.