This paper investigates the transition function and the reachability conditions of finite automata by using a semitensor product of matrices, which is a new powerful matrix analysis tool. The states and input symbols ...This paper investigates the transition function and the reachability conditions of finite automata by using a semitensor product of matrices, which is a new powerful matrix analysis tool. The states and input symbols are first expressed in vector forms, then the transition function is described in an algebraic form. Using this algebraic representation, a sufficient and necessary condition of the reachability of any two states is proposed, based on which an algorithm is developed for discovering all the paths from one state to another. Furthermore, a mechanism is established to recognize the language acceptable by a finite automaton. Finally, illustrative examples show that the results/algorithms presented in this paper are suitable for both deterministic finite automata (DFA) and nondeterministic finite automata (NFA).展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61174094), and the Tianjin Natural Science Foundation of China under (14JCYBJC18700 and 13JCY- BJC17400).
文摘This paper investigates the transition function and the reachability conditions of finite automata by using a semitensor product of matrices, which is a new powerful matrix analysis tool. The states and input symbols are first expressed in vector forms, then the transition function is described in an algebraic form. Using this algebraic representation, a sufficient and necessary condition of the reachability of any two states is proposed, based on which an algorithm is developed for discovering all the paths from one state to another. Furthermore, a mechanism is established to recognize the language acceptable by a finite automaton. Finally, illustrative examples show that the results/algorithms presented in this paper are suitable for both deterministic finite automata (DFA) and nondeterministic finite automata (NFA).