To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and p...To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.展开更多
The history of development and current situation of the theoretical description and numerical modeling of the solidification process are reviewed.The status and problems of the related research are discussed,with the ...The history of development and current situation of the theoretical description and numerical modeling of the solidification process are reviewed.The status and problems of the related research are discussed,with the main focus being on the solidification theories associated with microstructure formation and the concurrent macro-/microcoupling methods used to simulate solidification.Furthermore,the development trends of the theoretical description and numerical modeling of solidification are discussed.展开更多
The kinetic behavior of an aggregation-fragmentation-annihilation system with two distinct species is studied. We propose that the aggregation reaction occurs only between two clusters of the same species, and the irr...The kinetic behavior of an aggregation-fragmentation-annihilation system with two distinct species is studied. We propose that the aggregation reaction occurs only between two clusters of the same species, and the irreversible annihilation reaction occurs only between two clusters of different species, meanwhile there exists the fragmentation reaction of a cluster into two smaller clusters for either species. Based on the mean-field theory, we investigate the rate equations of the process with constant reaction rates and obtain the asymptotic descriptions of the cluster-mass distribution. In the case of the same initial concentrations of two species, the scaling descriptions for the cluster-mass distributions of the two species are found to break down completely. It is also observed that the kinetic behaviors of distinct species are quite complicated for the case of different initial concentrations of the two species. The clusters of larger initial concentration species (heavy species) possess peculiar scaling properties, while the cluster-mass distribution of light species has not scaling behavior. The exponents describing the scaling behavior for heavy species strongly depend on its fragmentation rate and initial monomer concentrations of two kinds of reactants.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51774307,52074331,42002182)partially supported by Major Special Projects of CNPC,China(ZD2019-184)。
文摘To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure.
基金supported by the National Basic Research Program of China(2011CB610402)
文摘The history of development and current situation of the theoretical description and numerical modeling of the solidification process are reviewed.The status and problems of the related research are discussed,with the main focus being on the solidification theories associated with microstructure formation and the concurrent macro-/microcoupling methods used to simulate solidification.Furthermore,the development trends of the theoretical description and numerical modeling of solidification are discussed.
文摘The kinetic behavior of an aggregation-fragmentation-annihilation system with two distinct species is studied. We propose that the aggregation reaction occurs only between two clusters of the same species, and the irreversible annihilation reaction occurs only between two clusters of different species, meanwhile there exists the fragmentation reaction of a cluster into two smaller clusters for either species. Based on the mean-field theory, we investigate the rate equations of the process with constant reaction rates and obtain the asymptotic descriptions of the cluster-mass distribution. In the case of the same initial concentrations of two species, the scaling descriptions for the cluster-mass distributions of the two species are found to break down completely. It is also observed that the kinetic behaviors of distinct species are quite complicated for the case of different initial concentrations of the two species. The clusters of larger initial concentration species (heavy species) possess peculiar scaling properties, while the cluster-mass distribution of light species has not scaling behavior. The exponents describing the scaling behavior for heavy species strongly depend on its fragmentation rate and initial monomer concentrations of two kinds of reactants.