针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(Interval Probability Distribution Learning, IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来...针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(Interval Probability Distribution Learning, IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来获取风速的概率分布,结合模糊Ⅱ型推理系统(Fuzzy Type Ⅱ Inference System, FT2IS),设计一个有监督回归的实值区间深度置信网络(Interval Deep Belief Network, IDBN)。算例结果表明,该方法结合了IPDL和FT2IS的鲁棒性,风速预测性能较好。展开更多
极小极大概率机(Minimax Probability Machine,MPM)、极小极大概率终端学习机(Minimax Probability Extreme Learning Machine,MPELM)和孪生极小极大概率终端学习机(Twin MPELM,TMPELM)在不对数据分布进行具体要求的情况下,可以为泛化...极小极大概率机(Minimax Probability Machine,MPM)、极小极大概率终端学习机(Minimax Probability Extreme Learning Machine,MPELM)和孪生极小极大概率终端学习机(Twin MPELM,TMPELM)在不对数据分布进行具体要求的情况下,可以为泛化误差提供明确的上界,同时使经验风险极小化。目前,MPM算法、MPELM算法和TMPELM算法主要是通过求解二阶锥规划模型的内点算法实现。本文利用支持向量机思想和凸二次规划的Wolfe对偶形式,对已有的MPM算法、MPELM算法和TMPELM算法进行了改进,并提出了三个新算法。实验结果表明,本文所提算法是有效和可竞争的。展开更多
文摘针对风速的不确定性、时变和非线性特征,提出一种用于风速预测的基于受限玻尔兹曼机和粗糙集理论的区间概率分布学习(Interval Probability Distribution Learning, IPDL)模型。该模型包含一组区间隐藏变量,利用Gibbs抽样和对比散度来获取风速的概率分布,结合模糊Ⅱ型推理系统(Fuzzy Type Ⅱ Inference System, FT2IS),设计一个有监督回归的实值区间深度置信网络(Interval Deep Belief Network, IDBN)。算例结果表明,该方法结合了IPDL和FT2IS的鲁棒性,风速预测性能较好。
文摘极小极大概率机(Minimax Probability Machine,MPM)、极小极大概率终端学习机(Minimax Probability Extreme Learning Machine,MPELM)和孪生极小极大概率终端学习机(Twin MPELM,TMPELM)在不对数据分布进行具体要求的情况下,可以为泛化误差提供明确的上界,同时使经验风险极小化。目前,MPM算法、MPELM算法和TMPELM算法主要是通过求解二阶锥规划模型的内点算法实现。本文利用支持向量机思想和凸二次规划的Wolfe对偶形式,对已有的MPM算法、MPELM算法和TMPELM算法进行了改进,并提出了三个新算法。实验结果表明,本文所提算法是有效和可竞争的。