期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
面向数据直方图发布的差分隐私保护综述 被引量:8
1
作者 王红 葛丽娜 +2 位作者 王丽颖 张静 张翼鹏 《计算机应用研究》 CSCD 北大核心 2017年第6期1609-1612,共4页
与匿名隐私保护相比,差分隐私保护作为一种新的隐私保护技术,能抵抗假设攻击和背景知识攻击。差分隐私保护的直方图发布能够直观地表示数据的发布信息,针对国内外在静态数据集和动态数据流方向上的数据直方图发布的差分隐私保护研究现... 与匿名隐私保护相比,差分隐私保护作为一种新的隐私保护技术,能抵抗假设攻击和背景知识攻击。差分隐私保护的直方图发布能够直观地表示数据的发布信息,针对国内外在静态数据集和动态数据流方向上的数据直方图发布的差分隐私保护研究现状进行介绍,讨论有关静态数据集下直方图存在长区间添加噪声而导致的噪声累积、数据可用性低以及动态数据流下隐私预算容易耗尽问题的解决方法,对基于直方图的差分隐私保护各相关算法进行对比与分析,最后总结出目前差分隐私保护技术的应用及未来的研究方向。 展开更多
关键词 直方图 差分隐私保护 静态数据集 噪声 隐私预算 动态数据流
下载PDF
差异化隐私预算分配的线性回归分析算法 被引量:7
2
作者 郑剑 邹鸿珍 《计算机应用与软件》 CSCD 2016年第3期275-278,共4页
针对用差分隐私方法进行线性回归分析敏感性偏大的问题,提出一种差异化的隐私预算分配算法Diff-LR(Differential Privacy Linear Regression)。该算法首先把目标函数分解成两个子函数,再分别计算两个子函数的敏感性、分配合理的隐私预算... 针对用差分隐私方法进行线性回归分析敏感性偏大的问题,提出一种差异化的隐私预算分配算法Diff-LR(Differential Privacy Linear Regression)。该算法首先把目标函数分解成两个子函数,再分别计算两个子函数的敏感性、分配合理的隐私预算,并采用拉普拉斯机制给两个子函数系数添加噪音。然后对子函数进行组合,得到添加噪声后的目标函数,求取最优线性回归模型参数。最后利用差分隐私序列组合特性从理论上证明该算法满足ε-差分隐私。实验结果表明,Diff-LR算法产生的线性回归模型具有很高的预测准确性。 展开更多
关键词 差分隐私 线性回归分析 敏感性 隐私预算
下载PDF
基于差分隐私的个性化联邦电力负荷预测方案
3
作者 谭智文 徐茹枝 关志涛 《电力信息与通信技术》 2024年第7期18-26,共9页
为了实现兼具模型个性化和隐私保护个性化的电力负荷预测方案,文章提出了基于差分隐私的个性化联邦电力负荷预测方案。方案基于数据的缺失情况和时序特征进行集群式训练,得到适用于局部数据的本地个性化模型。在此基础上提出了个性化差... 为了实现兼具模型个性化和隐私保护个性化的电力负荷预测方案,文章提出了基于差分隐私的个性化联邦电力负荷预测方案。方案基于数据的缺失情况和时序特征进行集群式训练,得到适用于局部数据的本地个性化模型。在此基础上提出了个性化差分隐私保护方案,根据客户端到当前集群中心的距离调整隐私预算的分配,确保数据安全并实现客户端级别的隐私保护个性化。实验表明,算法在保证数据安全的同时,能训练得到效用较好的个性化模型。 展开更多
关键词 电力负荷预测 个性化联邦学习 差分隐私 隐私保护 隐私预算 聚类
下载PDF
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
4
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊C均值聚类算法 高斯核函数 数据挖掘 隐私预算
下载PDF
基于数据特征相关性和自适应差分隐私的深度学习方法研究
5
作者 康海燕 王骁识 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1963-1976,共14页
基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基... 基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好. 展开更多
关键词 差分隐私 深度学习 逐层相关性传播 信息熵 隐私度量 隐私预算 拉普拉斯机制
下载PDF
基于聚类和深度学习的车联网轨迹隐私保护机制
6
作者 申自浩 唐雨雨 +2 位作者 王辉 刘沛骞 刘琨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第1期20-28,共9页
针对车联网轨迹发布中用户面临的隐私泄露问题,提出基于聚类和深度学习的轨迹隐私保护机制(PPCDL).考虑轨迹中的时间因素,通过时间戳将轨迹空间划分为多个区域,获取区域中的轨迹分布点.对每个区域进行改进稳定隶属度多峰值聚类,根据区... 针对车联网轨迹发布中用户面临的隐私泄露问题,提出基于聚类和深度学习的轨迹隐私保护机制(PPCDL).考虑轨迹中的时间因素,通过时间戳将轨迹空间划分为多个区域,获取区域中的轨迹分布点.对每个区域进行改进稳定隶属度多峰值聚类,根据区域轨迹密度进行隐私预算矩阵的预分配.利用时间图卷积网络模型提取轨迹数据的时空特征,对隐私预算预分配矩阵进行训练和预测.根据预测结果添加相应的拉普拉斯噪声,在轨迹数据发布前进行扰动.理论分析和实验结果表明,PPCDL相较于对比机制,时间开销更少,能够更精确地预测隐私预算.利用PPCDL可以合理地在轨迹数据中添加拉普拉斯噪声,有效地提高了轨迹数据的可用性. 展开更多
关键词 隐私保护 密度峰值聚类 轨迹隐私 时间图卷积网络 隐私预算
下载PDF
基于知识蒸馏的差分隐私联邦学习方法
7
作者 谭智文 徐茹枝 +1 位作者 王乃玉 罗丹 《计算机科学》 CSCD 北大核心 2024年第S01期906-913,共8页
差分隐私技术作为一种隐私保护方法,在联邦学习领域得到了广泛应用。现有的差分隐私应用于联邦学习的研究,或是未考虑无标签公共数据,或是未考虑客户端之间的数据量差异,限制了其在现实场景的应用。文中提出一种基于知识蒸馏的差分隐私... 差分隐私技术作为一种隐私保护方法,在联邦学习领域得到了广泛应用。现有的差分隐私应用于联邦学习的研究,或是未考虑无标签公共数据,或是未考虑客户端之间的数据量差异,限制了其在现实场景的应用。文中提出一种基于知识蒸馏的差分隐私联邦学习方法,引入无标签公共数据集并考虑到客户端之间数据量的差异,为此场景设计了专用的差分隐私方案。首先,按数据量大小将客户端分组为“大数据量客户端”和“一般客户端”,用大数据量客户端的数据训练教师模型,教师模型为公共数据集添加伪标签,然后,公共数据集作为“特殊客户端”与“一般客户端”共同进行联邦训练。采用差分隐私技术保证客户端的数据隐私,由于特殊客户端的数据只有标签涉及隐私,在联邦训练中为其分配比一般客户端更多的隐私预算;限制隐私预算总量,设联邦训练阶段的隐私预算为定值,根据客户端对隐私性的需求和隐私预算平行组合性质,调整伪标签添加阶段的隐私预算。在MNIST数据集和SVHN数据集上的实验表明,在同等的隐私预算消耗下,训练得到了精度比传统方法更高的模型。本方案具有可拓展性,高灵活度的隐私预算分配使其可以满足复杂的隐私需求。 展开更多
关键词 联邦学习 差分隐私 知识蒸馏 隐私保护 隐私预算
下载PDF
基于高斯核函数的差分隐私技术联合聚类算法在医疗数据安全中的应用
8
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医疗设备》 2024年第7期28-35,共8页
目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原... 目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原理、差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm,DPFCM)和基于高斯核函数的差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm Based on Gaussian Kernel Function,DPFCM_GF)的构建过程,采用最大距离法确定初始中心点,使用聚类中心点的高斯值来计算隐私预算分配比率,使用拉普拉斯噪声完成差分隐私保护。通过收集整理心脏病、乳腺癌、甲状腺疾病、糖尿病的公开数据对各算法进行验证。结果DPFCM_GF和DPFCM对不同数据集的聚类效果随隐私预算的增加逐渐改善。DPFCM_GF限值隐私预算分别为1.31、0.85、0.66、1.75,相对DPFCM减少了41.78%、50.29%、53.52%、38.38%,具有较快的收敛迭代速度,增幅差异具有统计学意义(P<0.05)。结论在医疗数据分析中,DPFCM_GF在一定程度上能够保护医疗数据的隐私,同时可提供具有较高准确性的聚类结果,具有潜在的应用前景和市场价值。 展开更多
关键词 高斯核函数 差分隐私技术 聚类算法 模糊C均值聚类算法 隐私预算
下载PDF
基于区块链的隐私预算管理模型研究 被引量:1
9
作者 杜丽涛 《云南民族大学学报(自然科学版)》 CAS 2023年第4期515-519,共5页
针对目前智能财务管理时存在效率低、数据冗余、查询受限等问题,提出了基于多链结构的隐私预算管理模型.首先,建立历史记录簿,根据多链结构管理隐私预算,从而使数据使用者了解数据使用情况.其次,提出了一种改进的PRF模型用于检查历史查... 针对目前智能财务管理时存在效率低、数据冗余、查询受限等问题,提出了基于多链结构的隐私预算管理模型.首先,建立历史记录簿,根据多链结构管理隐私预算,从而使数据使用者了解数据使用情况.其次,提出了一种改进的PRF模型用于检查历史查询记录是否与当前查询类型匹配,从而提高匹配相关性检测效率.最后,提出了一种基于噪声复用的差分隐私保护算法,从而防止具有知识背景的攻击者通过重复查询推断噪声量,提高同类查询的安全性能.本文方法为生产、财务等敏感信息管理具有一定借鉴作用.仿真阶段分别对剩余隐私预算、数据效能及模型性能进行分析,结果表明所提模型能够有效改善声音隐私预算分配情况,且可以减少节点存储的数据量,缓解数据冗余问题. 展开更多
关键词 智能财务管理 区块链 隐私预算 差分隐私 查询匹配
下载PDF
物联网环境中基于深度学习的差分隐私预算优化方法 被引量:2
10
作者 罗丹 徐茹枝 关志涛 《物联网学报》 2022年第2期65-76,共12页
为有效处理物联网大规模应用所带来的海量数据,深度学习在物联网环境中得到广泛应用。然而,深度模型在训练过程中,存在推理攻击、模型逆向攻击等安全威胁,这会导致输入模型中的原始数据泄露。应用差分隐私对深度模型训练过程的参数进行... 为有效处理物联网大规模应用所带来的海量数据,深度学习在物联网环境中得到广泛应用。然而,深度模型在训练过程中,存在推理攻击、模型逆向攻击等安全威胁,这会导致输入模型中的原始数据泄露。应用差分隐私对深度模型训练过程的参数进行保护,是解决该问题的有效方式。基于此提出一种物联网环境中基于深度学习的差分隐私预算优化方法,根据参数迭代变化规律,自适应地分配不同预算;为避免噪声过大的问题,引入正则化项对扰动项进行约束,既防止神经网络过拟合,又有助于学习模型的显著特征。实验表明,所提方法可有效增强模型的泛化能力;随着模型迭代次数增加,加噪后训练得到的模型,与使用原始数据训练得到的模型,二者精度差值低于0.5%。因此,所提方法既可实现用户隐私保护,同时有效保证模型可用性,实现了隐私性和可用性的平衡。 展开更多
关键词 物联网 差分隐私 正则化 深度学习 隐私预算
下载PDF
一种基于差分隐私的个性化服务推荐算法 被引量:1
11
作者 李晓会 陈潮阳 +1 位作者 张兴 伊华伟 《现代电子技术》 2022年第4期83-88,共6页
推荐系统存在用户隐私安全性低、推荐服务质量差的问题。为此,文中提出一种基于差分隐私的个性化服务推荐算法DPk⁃median。该算法针对推荐系统服务器中生成的推荐列表,首先利用k⁃median聚类算法将推荐数据中具有相同属性的数据进行聚类... 推荐系统存在用户隐私安全性低、推荐服务质量差的问题。为此,文中提出一种基于差分隐私的个性化服务推荐算法DPk⁃median。该算法针对推荐系统服务器中生成的推荐列表,首先利用k⁃median聚类算法将推荐数据中具有相同属性的数据进行聚类;然后根据不同簇的风险级别,添加相应的拉普拉斯噪声机制,同一簇中的隐私预算参数是相同的,在保证隐私的前提下,可合理控制噪声的加入并提高噪声的利用率,保证推荐的质量损失减小,同时增加算法的执行效率。相关实验结果表明,与以往的基于差分隐私的个性化服务推荐系统相比,文中所提出的算法在保证系统安全性的同时,提高了服务推荐的质量和算法的执行效率。 展开更多
关键词 个性化服务推荐 差分隐私 数据聚类 拉普拉斯噪声机制 隐私预算 推荐服务质量 风险级别
下载PDF
面向位置推荐的差分隐私保护方法 被引量:2
12
作者 夏英 毛鸿睿 +1 位作者 张旭 裴海英 《计算机科学》 CSCD 北大核心 2017年第12期38-41,57,共5页
位置推荐服务能使用户更容易地获得周边的兴趣点信息,但也会带来用户位置隐私泄露的风险。为了避免位置隐私泄露带来的不利影响,提出一种面向位置推荐服务的差分隐私保护方法。在保持用户位置轨迹与签到频率特征的前提下,基于路径前缀... 位置推荐服务能使用户更容易地获得周边的兴趣点信息,但也会带来用户位置隐私泄露的风险。为了避免位置隐私泄露带来的不利影响,提出一种面向位置推荐服务的差分隐私保护方法。在保持用户位置轨迹与签到频率特征的前提下,基于路径前缀树及其平衡程度采用均匀分配和几何分配两种方式进行隐私预算分配,然后根据隐私预算分配结果添加满足差分隐私的Laplace噪音。实验结果表明该方法能有效保护用户位置隐私,同时通过合理的隐私预算分配能减少差分隐私噪音对推荐质量的影响。 展开更多
关键词 位置推荐 差分隐私 隐私预算 Laplace噪音
下载PDF
满足本地化差分隐私的推荐系统中隐私预算的优化设置
13
作者 暴婷 徐蕾 +1 位作者 祝烈煌 王丽宏 《中国科学:信息科学》 CSCD 北大核心 2022年第8期1481-1499,共19页
推荐系统可帮助用户从众多的数据中发现用户所需数据,与此同时,上传用户原始数据给服务器也可能泄露用户隐私.本文使用本地化差分隐私技术为推荐系统中的用户数据提供隐私保护.在本地化差分隐私模型中,隐私预算控制用户数据的隐私保护程... 推荐系统可帮助用户从众多的数据中发现用户所需数据,与此同时,上传用户原始数据给服务器也可能泄露用户隐私.本文使用本地化差分隐私技术为推荐系统中的用户数据提供隐私保护.在本地化差分隐私模型中,隐私预算控制用户数据的隐私保护程度,较高的隐私预算通常意味着较高的分析准确性.为在最小化隐私损失的同时最大化推荐准确性,我们将隐私预算设置问题建模为多臂赌博机问题,并提出基于置信度上界的学习策略帮助用户选择最优的隐私预算.考虑到用户对不同数据的敏感程度不同,我们对学习策略进行了改进.真实数据集上的实验结果表明,所提策略可以帮助用户选出合适的隐私预算,可有效提高用户的累计收益. 展开更多
关键词 推荐系统 本地化差分隐私 隐私预算 强化学习 多臂赌博机
原文传递
支持层级相关性传播的差分隐私分类算法研究 被引量:1
14
作者 侯小军 李泽华 李泽堃 《微电子学与计算机》 2021年第5期48-53,共6页
为了防止攻击者在深度学习图像分类过程中还原训练集数据并保护输入图像数据,提出一种基于层级相关性传播的差分隐私分类算法.该算法首先采用层级相关性传播模型量化图像的特征相关性,然后利用相关性自适应地向损失函数添加噪声并利用A... 为了防止攻击者在深度学习图像分类过程中还原训练集数据并保护输入图像数据,提出一种基于层级相关性传播的差分隐私分类算法.该算法首先采用层级相关性传播模型量化图像的特征相关性,然后利用相关性自适应地向损失函数添加噪声并利用Adam算法进行模型优化,最后依据相关性分配隐私预算并构造差分隐私变换层以扰动输入数据.实验结果表明,该算法在实现隐私保护的同时,能够保证较高的分类准确率. 展开更多
关键词 层级相关性 深度学习 差分隐私 噪声 分类
下载PDF
基于差分隐私的非等距直方图发布方法 被引量:1
15
作者 杨磊 郑啸 赵伟 《网络与信息安全学报》 2020年第3期39-49,共11页
已有的基于差分隐私的直方图发布技术在利用直方图反映数据的真实分布特征时可能会出现“重拖尾”和“零桶”现象,并且在数据量较多处“过于平缓”;另外,已有技术对原始直方图进行差分隐私保护时未考虑每个分组所蕴含的信息量大小不同... 已有的基于差分隐私的直方图发布技术在利用直方图反映数据的真实分布特征时可能会出现“重拖尾”和“零桶”现象,并且在数据量较多处“过于平缓”;另外,已有技术对原始直方图进行差分隐私保护时未考虑每个分组所蕴含的信息量大小不同。针对以上问题,提出一种基于差分隐私的非等距直方图发布方法。首先,利用经验分布函数根据数据稀疏性合理构建非等距直方图;然后,在非等距直方图上应用差分隐私保护技术对原始非等距直方图进行隐私保护;最后,根据非等距直方图的组距大小为每组设置隐私预算以提高每组数据的隐私性。实验结果表明,所提方法在差分隐私下进行直方图发布时充分考虑了数据分布的稀疏性,有效避免了直方图的“重拖尾”和“零桶”现象,保证了所发布直方图反映数据分布特征的准确性;并且为每组添加符合拉普拉斯(Laplace)机制的噪声时,根据组距为每组设置合理的隐私预算,在一定程度上提高了不同数据段的隐私性。 展开更多
关键词 差分隐私 非等距 直方图发布 拉普拉斯机制 隐私预算
下载PDF
Top-k频繁子图挖掘的差分隐私保护算法
16
作者 徐捷 杨庚 白云璐 《计算机技术与发展》 2022年第5期80-86,共7页
频繁子图挖掘是频繁模式挖掘的一种具体形式,广泛应用于社会网络分析、生物技术、推荐系统等领域。然而,图数据集中可能包含一些敏感的信息,在挖掘过程中或发布频繁子图信息时都可能造成隐私的泄露。对此,提出一种面向差分隐私保护的to... 频繁子图挖掘是频繁模式挖掘的一种具体形式,广泛应用于社会网络分析、生物技术、推荐系统等领域。然而,图数据集中可能包含一些敏感的信息,在挖掘过程中或发布频繁子图信息时都可能造成隐私的泄露。对此,提出一种面向差分隐私保护的top-k子图挖掘算法——DP-TGM(Differential Private Top-k subGraph Mining)。算法首先依据挖掘出的频繁点和边对数据集剪枝,然后将频繁的边依次进行扩展挖掘,得到最终的top-k频繁子图。该算法使用一个优先权队列存储临时挖掘到的前k个最频繁的子图,在扩展挖掘的过程中不断更新队列里的元素,并将阈值始终更新为队列里的最小噪音支持度,减少图的扩展次数。算法使用拉普拉斯机制在三个不同的阶段对子图的真实支持度添加噪音,并且采用均分法和特殊级数法对隐私预算进行合理的分配以提高数据可用性。文章用理论证明算法满足ε-差分隐私保护,且在不同规模的数据集上验证了算法的可用性。 展开更多
关键词 top-k频繁子图 差分隐私 拉普拉斯机制 隐私预算 数据可用性
下载PDF
一种差分隐私K-means聚类算法的隐私预算分配方案
17
作者 黄保华 程琪 +1 位作者 袁鸿 黄丕荣 《网络空间安全》 2020年第11期11-19,共9页
差分隐私K-means聚类算法因其能很好地兼顾数据可用性和数据隐私安全,而得到了广泛地关注和研究。目前,在许多对差分隐私K-means聚类算法的研究中,都从K-means聚类算法的初始中心点的选择上做改进来提高数据的可用性,而很少关注隐私预... 差分隐私K-means聚类算法因其能很好地兼顾数据可用性和数据隐私安全,而得到了广泛地关注和研究。目前,在许多对差分隐私K-means聚类算法的研究中,都从K-means聚类算法的初始中心点的选择上做改进来提高数据的可用性,而很少关注隐私预算的分配问题对聚类结果带来的影响。传统的隐私预算分配方法可能在K-means算法后期的迭代更新质心的过程中引入大量的噪声而造成数据聚类效果差的问题。为了解决这个问题,提出一种结合三分法和等差数列的隐私预算分配方案。该方法在差分隐私K-means聚类算法中,保证每次迭代更新质心的过程中引入的噪声不会引起质心变形,且前期使用三分法分配较大的预算,而在后期使用等差递减的方式,分配隐私预算使隐私预算能在设定的迭代次数中用尽。实验证明,该方法在相同条件下能提高差分隐私K-means聚类算法的可用性。 展开更多
关键词 差分隐私 K-MEANS聚类 隐私预算 隐私保护 数据挖掘
下载PDF
车联网中基于位置服务的个性化位置隐私保护 被引量:14
18
作者 徐川 丁颖祎 +3 位作者 罗丽 刘帅军 刘立祥 赵国锋 《软件学报》 EI CSCD 北大核心 2022年第2期699-716,共18页
随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下... 随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下,满足用户个性化隐私需求.首先,定义归一化的决策矩阵,描述导航推荐路线的效率和隐私效果;然后,引入多属性理论,建立效用模型,将用户的隐私偏好整合到该模型中,为用户选择效益最佳的驾驶路线;最后,考虑到用户的隐私偏好需求,以距离占比为衡量指标,为用户分配合适的隐私预算,并确定虚假位置的生成范围,以生成效用最高的服务请求位置.基于真实数据集,通过仿真实验,将所提方案与现有方案进行对比,实验结果表明:所提出的个性化位置隐私保护方案在合理保护用户隐私的情况下,能够满足用户的服务需求,以提供更高的服务质量(quality of service,QoS). 展开更多
关键词 个性化差分隐私 隐私预算分配 最优路径 服务质量
下载PDF
基于目标扰动的AdaBoost算法 被引量:3
19
作者 张淑芬 董燕灵 +1 位作者 徐精诚 王豪石 《通信学报》 EI CSCD 北大核心 2023年第2期198-209,共12页
针对AdaBoost算法的多轮迭过程会放大为实现差分隐私保护而添加的噪声,从而导致模型收敛缓慢、数据可用性大幅降低的问题,提出了一种基于目标扰动的AdaBoost算法——DPAda,采用目标扰动的方式对样本权值进行加噪,精确计算其敏感度,并赋... 针对AdaBoost算法的多轮迭过程会放大为实现差分隐私保护而添加的噪声,从而导致模型收敛缓慢、数据可用性大幅降低的问题,提出了一种基于目标扰动的AdaBoost算法——DPAda,采用目标扰动的方式对样本权值进行加噪,精确计算其敏感度,并赋予其动态的隐私预算。为了解决噪声叠加过多的问题,提出基于摆动数列、随机响应和改进的随机响应3种噪声注入算法。实验结果表明,与DPAda_Random算法和DPAda_Swing算法相比,DPAda_Improved算法能实现数据的隐私保护,拥有更高的分类准确率,优于其他差分隐私AdaBoost算法,并能解决连续加噪带来的噪声过大的问题。 展开更多
关键词 差分隐私 摆动数列 随机响应 隐私预算分配 ADABOOST算法
下载PDF
自适应差分隐私预算分配策略的直方图发布算法 被引量:7
20
作者 唐海霞 杨庚 白云璐 《计算机应用研究》 CSCD 北大核心 2020年第7期1952-1957,1963,共7页
差分隐私直方图发布中,隐私预算涉及到噪声添加的强度,直接影响到直方图发布的数据可用性,如何合理地进行隐私预算的分配是直方图发布算法面临的一大挑战。提出了一种自适应的隐私预算分配策略(adaptive privacy budget allocation,APB... 差分隐私直方图发布中,隐私预算涉及到噪声添加的强度,直接影响到直方图发布的数据可用性,如何合理地进行隐私预算的分配是直方图发布算法面临的一大挑战。提出了一种自适应的隐私预算分配策略(adaptive privacy budget allocation,APB)的直方图发布算法,首先通过分析分组前后引入的噪声误差和重构误差,建立了隐私预算分配权重的优化模型,得到最优分配权重和分组大小以及分组个数之间关系;然后基于优化模型和贪心分组的思想,提出了自适应的隐私预算分配策略,可以更好地均衡噪声误差和重构误差,提高发布数据的可用性。实验结果表明,基于自适应的隐私预算分配策略的直方图发布算法可用性高于同类算法。 展开更多
关键词 差分隐私 大数据分析 直方图发布 隐私预算分配 数据可用性
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部