针对用差分隐私方法进行线性回归分析敏感性偏大的问题,提出一种差异化的隐私预算分配算法Diff-LR(Differential Privacy Linear Regression)。该算法首先把目标函数分解成两个子函数,再分别计算两个子函数的敏感性、分配合理的隐私预算...针对用差分隐私方法进行线性回归分析敏感性偏大的问题,提出一种差异化的隐私预算分配算法Diff-LR(Differential Privacy Linear Regression)。该算法首先把目标函数分解成两个子函数,再分别计算两个子函数的敏感性、分配合理的隐私预算,并采用拉普拉斯机制给两个子函数系数添加噪音。然后对子函数进行组合,得到添加噪声后的目标函数,求取最优线性回归模型参数。最后利用差分隐私序列组合特性从理论上证明该算法满足ε-差分隐私。实验结果表明,Diff-LR算法产生的线性回归模型具有很高的预测准确性。展开更多
基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基...基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好.展开更多
随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下...随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下,满足用户个性化隐私需求.首先,定义归一化的决策矩阵,描述导航推荐路线的效率和隐私效果;然后,引入多属性理论,建立效用模型,将用户的隐私偏好整合到该模型中,为用户选择效益最佳的驾驶路线;最后,考虑到用户的隐私偏好需求,以距离占比为衡量指标,为用户分配合适的隐私预算,并确定虚假位置的生成范围,以生成效用最高的服务请求位置.基于真实数据集,通过仿真实验,将所提方案与现有方案进行对比,实验结果表明:所提出的个性化位置隐私保护方案在合理保护用户隐私的情况下,能够满足用户的服务需求,以提供更高的服务质量(quality of service,QoS).展开更多
文摘针对用差分隐私方法进行线性回归分析敏感性偏大的问题,提出一种差异化的隐私预算分配算法Diff-LR(Differential Privacy Linear Regression)。该算法首先把目标函数分解成两个子函数,再分别计算两个子函数的敏感性、分配合理的隐私预算,并采用拉普拉斯机制给两个子函数系数添加噪音。然后对子函数进行组合,得到添加噪声后的目标函数,求取最优线性回归模型参数。最后利用差分隐私序列组合特性从理论上证明该算法满足ε-差分隐私。实验结果表明,Diff-LR算法产生的线性回归模型具有很高的预测准确性。
文摘基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好.
文摘随着车联网的快速发展,用户享受车联网提供的位置服务(location-based services,LBSs)时,位置隐私泄漏是一个关键安全问题.针对车载网络中位置服务隐私泄露问题,提出了一种基于差分隐私的个性化位置隐私保护方案,在保护用户隐私的前提下,满足用户个性化隐私需求.首先,定义归一化的决策矩阵,描述导航推荐路线的效率和隐私效果;然后,引入多属性理论,建立效用模型,将用户的隐私偏好整合到该模型中,为用户选择效益最佳的驾驶路线;最后,考虑到用户的隐私偏好需求,以距离占比为衡量指标,为用户分配合适的隐私预算,并确定虚假位置的生成范围,以生成效用最高的服务请求位置.基于真实数据集,通过仿真实验,将所提方案与现有方案进行对比,实验结果表明:所提出的个性化位置隐私保护方案在合理保护用户隐私的情况下,能够满足用户的服务需求,以提供更高的服务质量(quality of service,QoS).