期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
K2算法在贝叶斯网络结构学习中的改进研究
被引量:
5
1
作者
周慕宇
刘以安
肖颖
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第3期320-324,共5页
针对K2算法学习贝叶斯网络(BN)结构苛刻的先验节点顺序条件,提出先验信息重构方法来提高算法适用性,让K2算法得到更加精准的网络结构。对于K2算法在较小样本数据中结构精度低的问题,使用模拟退火(SA)算法对其进行优化。利用重构先验信...
针对K2算法学习贝叶斯网络(BN)结构苛刻的先验节点顺序条件,提出先验信息重构方法来提高算法适用性,让K2算法得到更加精准的网络结构。对于K2算法在较小样本数据中结构精度低的问题,使用模拟退火(SA)算法对其进行优化。利用重构先验信息构建初始网络结构,改进SA算法的邻域求解方法,以求得网络的最优结构。通过学习4个BN结构,将改进的混合算法分别与K2算法和马尔可夫链蒙特卡洛(MCMC)算法进行优劣仿真比较。仿真结果表明:在相同的网络结构和先验条件下,该文改进的混合算法都能更好地识别网络结构,在各网络结构中无论先验经验是否准确,在结构精确度和海明距离方面都具有较强的学习能力。
展开更多
关键词
贝叶斯网络
结构学习
先验信息重构方法
模拟退火算法
马尔可夫链蒙特卡洛算法
下载PDF
职称材料
题名
K2算法在贝叶斯网络结构学习中的改进研究
被引量:
5
1
作者
周慕宇
刘以安
肖颖
机构
江南大学物联网工程学院
无锡职业技术学院
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2020年第3期320-324,共5页
基金
国家自然科学基金(61170120)。
文摘
针对K2算法学习贝叶斯网络(BN)结构苛刻的先验节点顺序条件,提出先验信息重构方法来提高算法适用性,让K2算法得到更加精准的网络结构。对于K2算法在较小样本数据中结构精度低的问题,使用模拟退火(SA)算法对其进行优化。利用重构先验信息构建初始网络结构,改进SA算法的邻域求解方法,以求得网络的最优结构。通过学习4个BN结构,将改进的混合算法分别与K2算法和马尔可夫链蒙特卡洛(MCMC)算法进行优劣仿真比较。仿真结果表明:在相同的网络结构和先验条件下,该文改进的混合算法都能更好地识别网络结构,在各网络结构中无论先验经验是否准确,在结构精确度和海明距离方面都具有较强的学习能力。
关键词
贝叶斯网络
结构学习
先验信息重构方法
模拟退火算法
马尔可夫链蒙特卡洛算法
Keywords
Bayesian
network
structure
learning
priori
information
reconstruction
method
simulated
annealing
algorithm
Markov
chain
Monte
Carlo
algorithm
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
K2算法在贝叶斯网络结构学习中的改进研究
周慕宇
刘以安
肖颖
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部