对工业化试制的32 mm厚大线能量船板钢EH36进行热输入为228 k J/cm的FCB法焊接试验,并研究了焊接接头的组织和力学性能。结果表明:焊接热影响区的过热粗晶区原奥氏体晶粒尺寸达到300~500μm,组织主要由少量晶界铁素体和晶内形核铁素体(...对工业化试制的32 mm厚大线能量船板钢EH36进行热输入为228 k J/cm的FCB法焊接试验,并研究了焊接接头的组织和力学性能。结果表明:焊接热影响区的过热粗晶区原奥氏体晶粒尺寸达到300~500μm,组织主要由少量晶界铁素体和晶内形核铁素体(约60%~80%)组成,是该区焊接时峰值温度达到δ相转变温度以上并停留较长时间造成的,并给出δ相转变温度及奥氏体晶粒尺寸与峰值温度之间的关系;粗晶区由15~30μm的多边形铁素体与3~10μm的针状铁素体(10%~20%)构成;细晶区包含10~20μm的多边形铁素体和小于等于10μm的珠光体;临界区表现为混晶组织。焊接接头热影响区的冲击功A_(kv)≥100 J(-20℃),拉伸试样断裂于母材,接头性能满足要求。展开更多
Effect of Ti addition on the microstructure and strengthening behavior in press hardening steels(PHS)was analyzed by optical metallography(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and...Effect of Ti addition on the microstructure and strengthening behavior in press hardening steels(PHS)was analyzed by optical metallography(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD).The results show that the microstructure of PHS is martensite,and two sizes of particles disperse in the martensite matrix during the forming and quenching process.The size of the bigger particles is between 100 and 200 nm,and the small particles are nanometer-sized.The quantity of the particles has a positive relation with the Ti content.More importantly,the microstructure and strengthening mechanism are affected by the precipitating behavior of the particles.Besides the prior austenite grain,martensite packet,block and lath are refined by Ti addition.The steels are strengthened by the fine grains,martensite substructure and precipitates.The uniformly distributed dislocation in the martensite lath,the density of which is between 3.0?10^(14) cm^(–2) and 5.0?10^(14) cm^(–2),strengthens the steels through associating with fine carbide particles.展开更多
A low carbon steel was used to determine the critical strain εc for completion of deformation enhanced ferrite transformation (DEFT) through a series of hot compression tests. In addition, the influence of prior au...A low carbon steel was used to determine the critical strain εc for completion of deformation enhanced ferrite transformation (DEFT) through a series of hot compression tests. In addition, the influence of prior austenite grain size (PAGS) on the critical strain was systematically investigated. Experimental results showed that the critical strain is affected by PAGS. When γ→α transformation completes, the smaller the PAGS is, the smaller the critical strain is. The ferrite grains obtained through DEFT can be refined to about 3 μm when the DEFT is completed.展开更多
文摘对工业化试制的32 mm厚大线能量船板钢EH36进行热输入为228 k J/cm的FCB法焊接试验,并研究了焊接接头的组织和力学性能。结果表明:焊接热影响区的过热粗晶区原奥氏体晶粒尺寸达到300~500μm,组织主要由少量晶界铁素体和晶内形核铁素体(约60%~80%)组成,是该区焊接时峰值温度达到δ相转变温度以上并停留较长时间造成的,并给出δ相转变温度及奥氏体晶粒尺寸与峰值温度之间的关系;粗晶区由15~30μm的多边形铁素体与3~10μm的针状铁素体(10%~20%)构成;细晶区包含10~20μm的多边形铁素体和小于等于10μm的珠光体;临界区表现为混晶组织。焊接接头热影响区的冲击功A_(kv)≥100 J(-20℃),拉伸试样断裂于母材,接头性能满足要求。
基金Project(U1460101)supported by the National Natural Science Foundation of ChinaProject(20120006120002)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Effect of Ti addition on the microstructure and strengthening behavior in press hardening steels(PHS)was analyzed by optical metallography(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD).The results show that the microstructure of PHS is martensite,and two sizes of particles disperse in the martensite matrix during the forming and quenching process.The size of the bigger particles is between 100 and 200 nm,and the small particles are nanometer-sized.The quantity of the particles has a positive relation with the Ti content.More importantly,the microstructure and strengthening mechanism are affected by the precipitating behavior of the particles.Besides the prior austenite grain,martensite packet,block and lath are refined by Ti addition.The steels are strengthened by the fine grains,martensite substructure and precipitates.The uniformly distributed dislocation in the martensite lath,the density of which is between 3.0?10^(14) cm^(–2) and 5.0?10^(14) cm^(–2),strengthens the steels through associating with fine carbide particles.
基金This work was financially supported by the National Science and Technology Ministry to the research project ‘Advanced industriali-zation technique of manufacture for carbon steel of 500 MPa grade’ (No.2001AA332020).
文摘A low carbon steel was used to determine the critical strain εc for completion of deformation enhanced ferrite transformation (DEFT) through a series of hot compression tests. In addition, the influence of prior austenite grain size (PAGS) on the critical strain was systematically investigated. Experimental results showed that the critical strain is affected by PAGS. When γ→α transformation completes, the smaller the PAGS is, the smaller the critical strain is. The ferrite grains obtained through DEFT can be refined to about 3 μm when the DEFT is completed.